POJ 2975 Nim题解

【题意】:

给定一种Nim状态(相当于含N堆石头),求能有几种方法能通过调整某一堆石头的状态(只准取出),使新的Nim状态为必败态。(或者说求出所给的Nim游戏状态有多少种方法能够赢)

【分析】:

Nim游戏是什么,参见百度百科:百度百科_Nim

在证明Nim游戏的SG函数的“根据这个判断被判为N-position的局面一定可以移动到某个P-position”命题时,有这么一段证明:对于某个局面(a1,a2,...,an),若a1^a2^...^an不为0,一定存在某个合法的移动,将ai改变成ai'后满足a1^a2^...^ai'^...^an=0。不妨设a1^a2^...^an=k,则一定存在某个ai,它的二进制表示在k的最高位上是1(否则k的最高位那个1是怎么得到的)。这时ai^k<ai一定成立。则我们可以将ai改变成ai'=ai^k,此时a1^a2^...^ai'^...^an=a1^a2^...^an^k=0。

由此,我们可以知道,对任意的当前状态S,只需将某堆石头a[i]变为S^a[i]即可使得整个局面的SG值为0,即变为必败态。(当然,为了保证操作合法,应当有S^a[i]<a[i],S^a[i]=a[i]时相当于不操作,不合法

【代码】:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAX 1001
int N,a[MAX],sum,ans;
int main()
{
    while(scanf("%d",&N)!=EOF && N)
    {
    	  ans=0;sum=0;
          for(int i=1;i<=N;i++)
          {
          	    scanf("%d",&a[i]);
          	    sum^=a[i];
		  }
		  for(int i=1;i<=N;i++)
		  	    if((sum^a[i])<a[i])
		  	          ans++;
		  printf("%d\n",ans);
	}
	return 0;
} 


  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值