【51nod】1049 最大子段和

基准时间限制:1 秒 空间限制:131072 KB 分值: 0  难度:基础题
 收藏
 关注
N个整数组成的序列a[1],a[2],a[3],…,a[n], 求该序列如a[i]+a[i+1]+…+a[j]的连续子段和的最大值。当所给的整数均为负数时和为0。
例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13。和为20。
Input
第1行:整数序列的长度N(2 <= N <= 50000)
第2 - N + 1行:N个整数(-10^9 <= A[i] <= 10^9)
Output
输出最大子段和。
Input示例
6
-2
11
-4
13
-5
-2
Output示例
20
相关问题
循环数组最大子段和 
10
 
最大子段和 V2 
160
 
最大M子段和 V3 
320
 
最小正子段和 
20
最大M子段和 V2 
160
 
最大M子段和 
80
 
最大子矩阵和 
40

注意数据范围 使用long long

#include<stdio.h>
typedef long long LL;
int main()
{
	int n;
	LL get,sum,ans;
	while(scanf("%d",&n)!=EOF)
	{
		ans=sum=0;
		while(n--)
		{
			scanf("%lld",&get);
			sum+=get;
			if(sum<0)
				sum=0;
			ans=sum>ans?sum:ans;
		}
		printf("%lld\n",ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值