An easy problem C
http://www.lydsy.com/JudgeOnline/problem.php?id=1798
http://acm.uestc.edu.cn/#/problem/show/1597
Time Limit: 4000/2000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others)
Submit Status
N个数排成一列,有三种操作。1.给一段区间内的每个数乘上一个非负整数。2.给一段区间内的每个数加上一个非负整数.3.询问一段区间的和模上P的值。
Input
第一行两个整数N(1≤N≤100000)表示数的个数,P(1≤P≤1000000000)表示模的值。接下来一行N个整数ai(0≤ai≤1000000000),接下来一行一个整数M(1≤M≤100000)表示操作数量,接下来M行每行描述一个操作。
第一种操作描述:1 L R C(0≤C≤1000000000),表示把L到R这段区间每个数乘上一个C。
第二种操作描述:2 L R C(0≤C≤1000000000),表示把L到R这段区间每个数加上一个C。
第二种操作描述:3 L R, 表示询问L到R这段区间内的数的和模上P的值。
Output
对面每个询问,输出对应的答案,每个询问占一行。
Sample Input
7 43
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7
Sample Output
2
35
8
题解
本以为乘法和加法操作有先后循序的,以为没法合并lazy tag,然后敲了一颗暴力一点的线段树,果然TLE了
其实更新
mul
标记的时候,是可以合并到
add
里的
sum
是当前区间的和
add,mul
是子区间的 lazy tag
初始化 sum=0,add=0,mul=1
更新
mul
:
add=add∗mul‘
sum=sum∗mul‘
mul=mul∗mul‘
更新
add
:
add=add+add‘
sum=sum+add‘⋅len
下传标记(这个可能容易写错,上传和即可,复杂度 o(nlogn)
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define KL k<<1
#define KR k<<1|1
typedef long long LL;
const int MAXS = 40 * 1024 * 1024;
char buf[MAXS], *ch;
void read(int &x) {
while(*ch <= 32) ++ch;
for(x = 0; *ch >= '0'; ++ch) x = x * 10 + *ch - '0';
}
const int MAXN = 1e5 + 5;
int sum[MAXN<<2], add[MAXN<<2], mul[MAXN<<2], arr[MAXN], N, P;
void build(int k, int l, int r) {
mul[k] = 1;
add[k] = 0;
if(l == r) {
sum[k] = arr[l];
}else {
build(KL, l, (l + r) / 2);
build(KR, (l + r) / 2 + 1, r);
sum[k] = sum[KL] + sum[KR];
sum[k] %= P;
}
}
inline void pushdown(int k, int l, int r) {
add[KL] = (1LL * add[KL] * mul[k] + add[k]) % P;
mul[KL] = (1LL * mul[KL] * mul[k]) % P;
sum[KL] = (1LL * sum[KL] * mul[k] % P + 1LL * add[k] * ((l + r)/2 - l + 1) % P) % P;
add[KR] = (1LL * add[KR] * mul[k] + add[k]) % P;
mul[KR] = (1LL * mul[KR] * mul[k]) % P;
sum[KR] = (1LL * sum[KR] * mul[k] % P + 1LL * add[k] * (r - (l + r)/2) % P) % P;
add[k] = 0;
mul[k] = 1;
}
inline void pushup(int k) {
sum[k] = (sum[KL] + sum[KR]) % P;
}
void change(int k, int ll, int rr, int l, int r, int ad, int mu) {
if(l > rr || r < ll) return ;
if(ll <= l && r <= rr) {
sum[k] = (sum[k] + 1LL * (r - l + 1) * ad % P) * mu % P;
add[k] = (1LL * add[k] * mu + ad) % P;
mul[k] = (1LL * mul[k] * mu) % P;
return ;
}
pushdown(k, l, r);
change(KL, ll, rr, l, (l + r)/2, ad, mu);
change(KR, ll, rr, (l + r)/2 + 1, r, ad, mu);
pushup(k);
}
LL query(int k, int ll, int rr, int l, int r) {
if(l > rr || r < ll) return 0;
if(ll <= l && r <= rr) return sum[k];
LL S = 0;
pushdown(k, l, r);
S += query(KL, ll, rr, l, (l + r)/2);
S += query(KR, ll, rr, (l + r)/2 + 1, r);
pushup(k);
return S % P;
}
int main()
{
fread(buf, MAXS, 1, stdin);
ch = buf;
read(N);
read(P);
for(int i = 1; i <= N; ++i) {
read(arr[i]);
}
build(1, 1, N);
int c, l , r, op, x;
read(c);
while(c--) {
read(op);
read(l);
read(r);
if(op == 3) {
int ans = query(1, l, r, 1, N);
printf("%d\n", ans);
} else {
read(x);
if(op == 1) {
change(1, l, r, 1, N, 0, x);
} else {
change(1, l, r, 1, N, x, 1);
}
}
}
return 0;
}
呃呃呃,这个是TLE代码,可忽略
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int MAXS = 60 * 1024 * 1024;
char buf[MAXS], *ch;
void read(int &x) {
while(*ch <= 32) ++ch;
for(x = 0; *ch >= 48; ++ch) x = x * 10 + *ch - '0';
}
typedef long long LL;
const int MAXN = 1e5 + 5;
int sum[MAXN<<2], tag[2][MAXN<<2], arr[MAXN], N, P;
void build(int k, int l, int r) {
tag[1][k] = tag[0][k] = 0;
if(l == r) {
sum[k] = arr[l];
}else {
build(k<<1, l, (l + r) / 2);
build(k<<1|1, (l + r) / 2 + 1, r);
sum[k] = sum[k<<1] + sum[k<<1|1];
sum[k] %= P;
}
}
inline void up(int k, int l, int r) {
sum[k] =( (sum[k<<1] + 1LL * tag[0][k<<1]*((l+r)/2-l+1))
* (tag[1][k<<1]? tag[0][k<<1] : 1)
+ (sum[k<<1|1] + 1LL * tag[0][k<<1|1]*(r-(l+r)/2))
* (tag[1][k<<1|1]? tag[0][k<<1|1] : 1) )%P;
}
void change(int k, int ll, int rr, int l, int r, int op, int num) {
if(l > rr || r < ll) return ;
if(ll <= l && r <= rr) {
if(l == r) {
sum[k] += tag[0][k];
if(tag[1][k]) sum[k] *= tag[1][k]?tag[1][k]:1;
tag[0][k] = tag[1][k] = 0;
sum[k] = (sum[k] + (1-op)*num) * (op?(op*num):1) % P;
return ;
} else if(tag[!op][k]) {
change(k<<1, ll, rr, l, (l + r)/2, !op, tag[!op][k]);
change(k<<1|1, ll, rr, (l + r)/2 + 1, r, !op, tag[!op][k]);
up(k, l, r);
}
tag[op][k] += num;
tag[op][k] %= P;
tag[!op][k] = 0;
return ;
}
if(tag[0][k]) {
change(k<<1, ll, rr, l, (l + r)/2, 0, tag[0][k]);
change(k<<1|1, ll, rr, (l + r)/2 + 1, r, 0, tag[0][k]);
up(k, l, r);
tag[0][k] = 0;
}
if(tag[1][k]) {
change(k<<1, ll, rr, l, (l + r)/2, 0, tag[1][k]);
change(k<<1|1, ll, rr, (l + r)/2 + 1, r, 0, tag[1][k]);
up(k, l, r);
tag[1][k] = 0;
}
change(k<<1, ll, rr, l, (l + r)/2, op, num);
change(k<<1|1, ll, rr, (l + r)/2 + 1, r, op, num);
up(k, l, r);
}
int query(int k, int ll, int rr, int l, int r) {
if(l > rr || r < ll) return 0;
else if(ll <= l && r <= rr) return (sum[k] + 1LL * tag[0][k] * (r - l +1)) * (tag[1][k]?tag[1][k]:1) % P;
int S = 0;
S += query(k<<1, ll, rr, l, (l + r)/2);
S += query(k<<1|1, ll, rr, (l + r)/2 + 1, r);
up(k, l, r);
return (S + 1LL * tag[0][k] * (min(rr, r) - max(ll, l) + 1)) * (tag[1][k]?tag[1][k]:1) % P;
}
int main()
{
fread(buf, MAXS, 1, stdin);
ch = buf;
read(N);
read(P);
for(int i = 1; i <= N; ++i) {
read(arr[i]);
}
build(1, 1, N);
int c, l , r, op, x;
read(c);
while(c--) {
read(op);
read(l);
read(r);
if(op == 3) printf("%d\n", query(1, l, r, 1, N));
else {
read(x);
change(1, l, r, 1, N, 2 - op, x);
}
}
return 0;
}