Old Problem [带修改的kth]

这是一个经典问题

n个数的数列A[1…n]
q次操作 :
1 L R x 区间[L,R] 加 x
2 L R k 询问区间[L,R] 第k大的数

0<q,n<105 ,256Mb 4 seconds

这个问题陈老师在一篇论文中给了3种方法


这里写图片描述

我选择了实现比较简单的 二分+分块

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN=1e5+5,NUM=2e3;
int A[MAXN],sA[MAXN],tag[NUM],n,m,num;
inline void build(){
    for(int i=0;i<=n/num;i++){
        tag[i]=0;
    }
    for(int i=0;i<=n;i++){
        sA[i]=A[i];
    }
    for(int i=0;i<n/num;i++){
        sort(sA+i*num,sA+i*num+num);
    }
}
inline void change(int l,int r,int t){
    if(l/num==r/num){
        for(int i=l;i<=r;i++){
            A[i]+=t;
        }
        if(r/num==n/num) return ;
        for(int i=l/num*num;i<r/num*num+num;i++){
            sA[i]=A[i];
        }
        sort(sA+l/num*num,sA+r/num*num+num);
        return ;
    }
    for(int i=l/num+1;i<r/num;i++){
        tag[i]+=t;
    }
    for(int i=l;i<l/num*num+num;i++){
        A[i]+=t;
    }
    for(int i=l/num*num;i<l/num*num+num;i++){
        sA[i]=A[i];
    }
    sort(sA+l/num*num,sA+l/num*num+num);
    for(int i=r/num*num;i<=r;i++){
        A[i]+=t;    
    }   
    if(r/num==n/num) return ;
    for(int i=r/num*num;i<r/num*num+num;i++){
        sA[i]=A[i];
    }
    sort(sA+r/num*num,sA+r/num*num+num);
}
inline int query(int l,int r,int qn){
    int cnt=0;
    if(l/num==r/num){
        for(int i=l;i<=r;i++){
            if(A[i]+tag[i/num]<=qn){
                cnt++;
            }
        }
        return cnt;
    }
    for(int i=l;i<l/num*num+num;i++){
        if(A[i]+tag[i/num]<=qn){
            cnt++;
        }
    }
    for(int i=r/num*num;i<=r;i++){
        if(A[i]+tag[i/num]<=qn){
            cnt++;
        }
    }
    for(int i=l/num+1;i<r/num;i++){
        cnt+=upper_bound(sA+i*num,sA+i*num+num,qn-tag[i])-(sA+i*num);
    }
    return cnt;
}
inline int getkth(int l,int r,int k){
    int low=-1e9,top=1e9;
    while(top-low>1){
        int mid=(top+low)>>1;
        int kk=query(l,r,mid);
        if(kk>=k) top=mid;
        else low=mid;
    }
    return top;
}
int main()
{
//  freopen("out","r",stdin);
//  freopen("myans","w",stdout);
    while(scanf("%d",&n)!=EOF){
        num=sqrt(n*log(n)/log(2));
        n--;
        for(int i=0;i<=n;i++) scanf("%d",&A[i]);
        build();
        scanf("%d",&m);
        while(m--){
            int op,l,r,x;
            scanf("%d%d%d%d",&op,&l,&r,&x);
            l--,r--;
            if(op==1){
                change(l,r,x);
            }else{
                int ans=getkth(l,r,x);
                printf("%d\n",ans);
            }
        }
    }
    return 0;
}

第一次写分块,写了个验证程序,也附上吧
数据生成

#include<stdio.h>
#include<stdlib.h>
#include<time.h>
const int MAXN=1e5+5;
const int T=10;
int A[MAXN];
int main()
{
    freopen("out","w",stdout);
    for(int i=0;i<T;i++){
        srand((unsigned int)(time(NULL)));
        int n=rand()+17;
        printf("%d\n",n);
        for(int i=0;i<n;i++) printf("%d ",rand()<(rand()+10000)?rand():-rand());
        int m=rand()%1234;
        printf("\n%d\n",m);
        while(m--){
            int op=rand()%2+1;
            int l=rand()%(n/2+1)+1;
            int r=l+rand()%(n/2+1);
            int x=op==1?(rand()<(rand()+10000)?rand():-rand()):(rand()%(r-l+1)+1);
            printf("%d %d %d %d\n",op,l,r,x);
        }
    }
    return 0;
}

暴力验证

#include<stdio.h>
#include<algorithm>
using namespace std;
const int MAXN=1e5+5;
int A[MAXN],B[MAXN],n,m;
int main()
{
    freopen("out","r",stdin);
    freopen("ans","w",stdout);
    while(scanf("%d",&n)!=EOF){
        for(int i=1;i<=n;i++) scanf("%d",&A[i]);
        scanf("%d",&m);
        int op,l,r,x;
        while(m--){
            scanf("%d%d%d%d",&op,&l,&r,&x);
            if(r>n||l>r) {puts("error");exit;}
            if(op==1){
                for(int i=l;i<=r;i++) A[i]+=x;
            }else{
                for(int i=l;i<=r;i++) B[i]=A[i];
                sort(B+l,B+r+1);
                printf("%d\n",B[l+x-1]);
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值