行人重识别(ReID) ——数据集描述 CUHK03

数据集简介

CUHK03是第一个足以进行深度学习的大规模行人重识别数据集,该数据集的图像采集于香港中文大学(CUHK)校园。数据以”cuhk-03.mat”的 MAT 文件格式存储,含有 1467 个不同的人物,由 5 对摄像头采集。

目录结构

CUHK-03
  ├── “detected”── 5 x 1 cell
       ├── 843x10 cell
       ├── 440x10 cell
       ├── 77x10 cell
       ├── 58x10 cell
       ├── 49x10 cell
  ├── “labeled”── 5 x 1 cell
       ├── 843x10 cell
       ├── 440x10 cell
       ├── 77x10 cell
       ├── 58x10 cell
       ├── 49x10 cell
  ├── “testsets”── 20 x 1 cell
       ├── 100 x 2 double matrix

目录介绍

(1)”detected”—— 5 x 1 cells,由机器标注,每个 cell 中包含一对摄像头组采集的照片,如下所示:
  每个摄像头组由 M x 10 cells 组成,M 为行人索引,前 5 列和后 5 列分别来自同一组的不同摄像头。
  cell 内每个元素为一幅 H x W x 3 的行人框图像(uint8 数据类型),个别图像可能空缺,为空集。

  • 843x10 cell ——> 摄像头组pair 1。
  • 440x10 cell ——> 摄像头组pair 2。
  • 77x10 cell ——> 摄像头组pair 3。
  • 58x10 cell ——> 摄像头组pair 4。
  • 49x10 cell ——> 摄像头组pair 5。

(2)”labeled”—— 5 x 1 cells,行人框由人工标注,格式和内容和”detected”相同。

(3)”testsets”—— 20 x 1 cells,测试协议,由 20 个 100 x 2 double 类型矩阵组成 (重复二十次)。
  100 x 2 double,100 行代表 100 个测试样本,第 1 列为摄像头 pair 索引,第 2 列为行人索引。

测试协议

CUHK-03的测试协议有两种。

  第一种为旧的版本(参考文献 [1], 即数据集的出处),参见数据集中的’testsets’测试协议。具体地说,即随机选出100个行人作为测试集,1160 个行人作为训练集,100 个行人作为验证集(这里总共 1360 个行人而不是 1467 个,这是因为实验中没有用到摄像头组pair 4 和 5 的数据),重复二十次。这种测试协议是 single-shot setting.

  第二种测试协议(参考文献 [2])类似于 Market-1501 ,它将数据集分为包含 767 个行人的训练集和包含 700 个行人的测试集。在测试阶段,我们随机选择一张图像作为 query,剩下的作为 gallery,这样的话,对于每个行人,有多个 ground truth 在 gallery 中。(新测试协议可以参考这里

下载地址

  1. Google Drive
  2. Baidu Disk 密码:rhjq

State-of-the-art

Citation

If you use this dataset, please kindly cite the following paper:

@inproceedings{li2014deepreid,
  title={DeepReID: Deep Filter Pairing Neural Network for Person Re-identification},
  author={Li, Wei and Zhao, Rui and Xiao, Tong and Wang, Xiaogang},
  booktitle={CVPR},
  year={2014}
}

参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gmHappy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值