最大似然估计

现在简单写写最大似然估计。
最大似然估计是一个概率估计问题,譬如已知一个数据空间 X X X,数据 X X X中的每一个样本都有n为特征。有样本整体 x = [ x 1 , x 2 , x 3 , x 4 , . . . . . , x n ] x=[x_1,x_2,x_3,x_4,.....,x_n] x=[x1,x2,x3,x4,.....,xn]。同时了有这样的先验知识,知道数据空间 X X X里面所有的样本,都符合一个的概率密度函数(prob density function),譬如均匀分布,或者高斯分布等。
现在假设样本都符合均匀分布,那么概率密度函数是
f ( x ) = { 1 b − a x ⊂ [ a , b ] 0 x ⊂ ( − ∞ , a ) ∪ ( b , ∞ ) } f(x)=\left \{ \begin{matrix} \frac{1}{b-a}&x\subset[a,b]\\0&x\subset(-\infty,a)\cup(b,\infty)\end{matrix} \right \} f(x)={ba10x[a,b]x(,a)(b,)}
那么现在就需要求取概率密度函数中的 a a a, b b b的值。
现在已知有 n n n个样本,全部带入概率密度函数。并将所有的概率相乘。
就得到 y = f ( x 1 ) ∗ f ( x 2 ) ∗ . . . ∗ f ( x n ) y=f(x_1)*f(x_2)*...*f(x_n) y=f(x1)f(x2)...f(xn)
我们在计算上面的公式时,一般都会取一个 l o g log log值,也就是 l o g − l i k e l y h o o d log-likelyhood loglikelyhood最大。
很显然, l o g ( y ) log(y) log(y)这个值最大,那么就让所有的样本的概率值都不为 0 0 0,这样就很容易得到
a = min ⁡ x i ( x 1 , x 2 , x 3 , x 4 , . . . . . , x n ) a=\min_{x_i}(x_1,x_2,x_3,x_4,.....,x_n) a=ximin(x1,x2,x3,x4,.....,xn)
b = max ⁡ x i ( x 1 , x 2 , x 3 , x 4 , . . . . . , x n ) b=\max_{x_i}(x_1,x_2,x_3,x_4,.....,x_n) b=ximax(x1,x2,x3,x4,.....,xn)
假如概率密度函数为高斯分布,
f ( x ) = 1 2 π σ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x)=\frac{1}{\sqrt{{2\pi}}\sigma}\exp(-\frac{(x-\mu)^2}{2\sigma^2}) f(x)=2π σ1exp(2σ2(xμ)2)
其中均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2
现在有样本 x = [ x 1 , x 2 , x 3 , x 4 , . . . . . , x n ] x=[x_1,x_2,x_3,x_4,.....,x_n] x=[x1,x2,x3,x4,.....,xn],需要使所有样本的 l o g − l i k e l y h o o d log-likelyhood loglikelyhood最大。
这样令 y = log ⁡ ( f ( x 1 ) ∗ f ( x 2 ) ∗ . . . ∗ f ( x n ) ) y=\log(f(x_1)*f(x_2)*...*f(x_n)) y=log(f(x1)f(x2)...f(xn)),这样就是所有的概率值的加和了。
y = log ⁡ 1 2 π σ exp ⁡ ( − ( x 1 − μ ) 2 2 σ 2 ) + . . . + log ⁡ 1 2 π σ exp ⁡ ( − ( x n − μ ) 2 2 σ 2 ) y=\log{\frac{1}{\sqrt{{2\pi}}\sigma}\exp(-\frac{(x_1-\mu)^2}{2\sigma^2})}+...+\log{\frac{1}{\sqrt{{2\pi}}\sigma}\exp(-\frac{(x_n-\mu)^2}{2\sigma^2})} y=log2π σ1exp(2σ2(x1μ)2)+...+log2π σ1exp(2σ2(xnμ)2)
其中 x = [ x 1 , x 2 , x 3 , x 4 , . . . . . , x n ] x=[x_1,x_2,x_3,x_4,.....,x_n] x=[x1,x2,x3,x4,.....,xn]是已知的,让 y y y最大,那就分别代入拉格朗日的算子,分别求导就好了。求出 σ \sigma σ, μ \mu μ
以上就是极大似然估计。







简单记录一下上面的公式,后面可能会用到。
公式1
f ( x ) = { 1 b − a x ⊂ [ a , b ] 0 x ⊂ ( − ∞ , a ) ∪ ( b , ∞ ) } f(x)= \left \{ \begin{matrix} \frac{1}{b-a}&x\subset[a,b]\\0&x\subset(-\infty,a)\cup(b,\infty) \end{matrix} \right \} f(x)={ba10x[a,b]x(,a)(b,)}

$$
f(x)=
    \left \{ 
      \begin{matrix} 
        \frac{1}{b-a}&x\subset[a,b]\\0&x\subset(-\infty,a)\cup(b,\infty)
      \end{matrix} 
    \right \}
$$

公式2:
f ( x ) = 1 2 π σ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x)=\frac{1}{\sqrt{{2\pi}}\sigma}\exp(-\frac{(x-\mu)^2}{2\sigma^2}) f(x)=2π σ1exp(2σ2(xμ)2)

$$
f(x)=\frac{1}{\sqrt{{2\pi}}\sigma}\exp(-\frac{(x-\mu)^2}{2\sigma^2})
$$
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值