自然语言期末复习笔记—Morphological Analysis

这篇博客总结了自然语言处理中的词形态分析,包括断词和词形还原。介绍了中文分词工具jieba和英文词形还原的重要性,探讨了正则表达式和有限状态自动机在处理词形分析中的应用,并指出深度学习与基于规则方法的互补关系。还提到了词形还原在最小编辑距离纠错中的应用局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

开始把这个学期的自然语言知识做一个归纳,记录在这个博客里。
Lexical Morphological Analysis
这个部分是关于词形态分析的内容。作为自然语言处理中首先要接触到的内容。
词形态分析包括两个部分:
1:断词 断词在汉语里面很重要,就是中文分词,我们有一个著名的jieba工具在可以很好地完成任务,我们在本学期也做了中文分词地大作业。大家基本用的都是基于统计的n元语法模型,也有的同学是用分类的思想,把词分为BESM四种类别的思想,具体的模型有SVM,神经网络。在英语里因为词之间都是用空格间隔,所以用断词用的不多。
2:词形还原: 汉语里,几乎没有词形还原,这里主要是针对英语讲的。
比如:
dogs->dog + 复数
women -> woman + 复数变化
我们之所以要做词形还原,是为了降低词的数量规模

接下来我们来谈谈我们怎么实现词形还原的任务。我们可不可以把所有词所有的表示方法都记录下来,然后遇到这个词就返回对应的还原内容,这样可不可以呢? 因为语言里面,词太多了,如果我们这么做不仅会处理时间长,而且存储容量也非常大。这样简单粗暴的方式是不可取的。
我们主要使用两种方法一种是正则表达式,另一种是有限状态自动机
有限状态自动机的表示形式
这里写图片描述
正则语言表达形式,大家如果以前编程的时候,多少都接触过,这里就不多说了。<

morphological spatial pattern analysis是一种在ArcGIS中使用的空间分析方法,用于研究地物形态和空间分布的模式。这种分析方法可以帮助我们了解地物的形状、大小、相互关系以及它们在空间上的分布情况。 在ArcGIS中进行morphological spatial pattern analysis的主要步骤有以下几个: 1. 数据准备:首先需要准备相应的地理数据,包括矢量数据、栅格数据或栅格图像。这些数据应包含有关感兴趣地物的信息,例如植被、建筑物等。 2. 设置分析参数:接下来需要设置分析的参数,包括选择使用的分析工具和所需的分析结果。ArcGIS提供了一系列工具,如Raster to Polygon、Polygon to Raster、Spatial Analyst等。 3. 执行分析:设置好参数后,就可以执行morphological spatial pattern analysis。该工具会根据设置的参数,对输入的地理数据进行相应的操作和计算,得到分析结果。 4. 结果分析和解释:最后,我们可以对分析结果进行进一步的分析和解释。通过观察和比较不同地物的形态、大小和分布情况,我们可以得出一些关于地物模式和空间关系的结论。 通过morphological spatial pattern analysis,我们可以深入了解地物的形态特征和空间结构,为城市规划、生态研究等提供有价值的参考。此外,ArcGIS作为一款强大的GIS软件,能够提供完善的空间分析功能,有助于我们更好地理解地理空间中的模式和关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值