GAN系列-原理篇

本文深入探讨了生成对抗网络(GAN)的基本原理,包括GAN如何通过KL散度拟合数据分布,以及训练过程中的二元交叉熵问题。文章还分析了GAN在训练时可能遇到的问题,如G和D的迭代平衡,并阐述了GAN相比其他生成模型的优势,如全局数据考虑和弥补输出独立性缺陷。最后,讨论了GAN训练中的一些理论争议和实践策略。
摘要由CSDN通过智能技术生成

最近开始看GAN相关地知识。GAN是很经典的模型,个人认为这里面的坑还是比较多的,以后写论文说不定能用上。
这篇博客重点是从原理上去说明GAN,会涉及较多的数学公式。GAN的训练方式大家都很熟悉了,认为很简单。但是我认为,要想深入地理解GAN模型光能实践还是不够地,还是需要理解他地由来,以及数学表达方式。这样才有可能进一步地利用GAN ,做出我们自己想要地东西,而不是从网上copy个代码,跑一下就完事了。
接下来的内容我们分为这几个方面讲

GAN的原理
GAN训练要注意的地方
GAN的优势

GAN 从high level 上说就是在拟合一个数据分布。比如我们要生成人脸图像,我们生成器输出可以看作是一个高维度向量,在这个维度向量里面,只有一部分数据看着像是人脸图像,而其他数据就不像人脸,我们地GAN网络中地生成器就是要去拟合那部分 像人脸的向量空间。
那去拟合一个分布,我们使用的方法叫做KL散度。在李宏毅老师的科城里面,证明如下的一个数学式子,就是极大似然其实等价于 KL散度。
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值