线性代数向量乘法
Prerequisites:
先决条件:
Linear algebra is the branch of mathematics concerning linear equations by using vector spaces and through matrices. In other words, a vector is a matrix in n-dimensional space with only one column. In a scalar product, each component of the vector is multiplied by the same scalar value. As a result, the vector’s length is increased by a scalar value.
线性代数是使用向量空间和矩阵的线性方程组的数学分支。 换句话说,向量是n维空间中只有一列的矩阵。 在标量积中,向量的每个分量都乘以相同的标量值。 结果,向量的长度增加了一个标量值。
For example: Let a vector a = [4, 9, 7], this is a 3 dimensional vector (x,y and z)
例如:令向量a = [4、9、7],这是3维向量(x,y和z)
So, a scalar product will be given as b = c*a
因此,标量积将给出为b = c * a
Where c is a constant scalar value (from the set of all real numbers R). The length vector b is c times the length of vector a. This scalar, multiplication follows a property shown below:
其中c是常数标量值(来自所有实数R的集合)。 长度矢量b是向量a的长度c倍。 此标量乘法遵循以下属性:
cA + dA = (c + d)A
Where A and B are two vectors. The python code aims to evaluate the right-hand side and left-hand side for proving the scalar property.
其中A和B是两个向量。 python代码旨在评估右侧和左侧以证明标量属性。
标量乘法属性2的Python代码 (Python code for scalar multiplication property 2)
# Vectors in Linear Algebra Sequnce
# Scalar Multiplication Property 2
A = [3, 5, -5, 8]
B = [7 , 7 , 7 , 7]
print("Vector A = ", A)
print("Vector B = ", B)
C = int(input("Enter the value of scalar multiplier c: "))
D = int(input("Enter the value of scalar multiplier d: "))
# Defining a function for scalar multiplication
def scalar(C, a):
b = []
for i in range(len(a)):
b.append(C*a[i])
return b
# Defining a function for addition
def add(a,b):
c = []
for i in range(len(a)):
c.append(a[i]+b[i])
return c
# RHS
print("Vector (c + d)A = ", scalar(C+D,A))
# LHS
An = scalar(C, A)
Bn = scalar(D, A)
print("Vector (cA + dA) = ", add(An,Bn))
print('---Both are same and therefore, the scalar property in vectors satisfies this property---')
Output:
输出:
Vector A = [3, 5, -5, 8]
Vector B = [7, 7, 7, 7]
Enter the value of scalar multiplier c: 5
Enter the value of scalar multiplier d: 2
Vector (c + d)A = [21, 35, -35, 56]
Vector (cA + dA) = [21, 35, -35, 56]
---Both are same and therefore, the scalar property in vectors satisfies this property---
翻译自: https://www.includehelp.com/python/scalar-multiplication-property-2.aspx
线性代数向量乘法