离散数学范式
正常形式 (Normal Form)
Suppose, A (P1, P2, ... , Pn) is a statements formula where P1, P2, ..., P6 are the atomic variables if we consider all possible assignments of the truth value to P1, P2, ..., Pn and obtain the resulting truth values of the formula A then we get the truth table for A, such a truth table contains 2^6 rows. The formula may have the truth value T for all possible assignments of the truth values to the variables P1, P2, ..., Pn. In this case, A is called identically true or tautology. If A has the truth value T for at least one combinations of truth values assigned to P1, P2, ..., Pn then A is called satisfiable.
假设A(P1,P2,...,Pn)是一个语句公式,如果我们考虑将真值的所有可能赋值给P1,P2,... , P1,P2,...,P6是原子变量,Pn和得到式A的所得真值然后我们得到的真值表为A,这样的真值表包括2 ^ 6的行。 对于将真值分配给变量P1,P2,...,Pn的所有可能的分配,公式可能具有真值T。 在这种情况下, A被称为真或重言式。 如果A对于分配给P1,P2,...,Pn的真值的至少一个组合具有真值T ,则称A为可满足的。
The problem of determining in a finite number of steps, whether a given statement formula is a tautology or a contradiction or least satisfiable is known as a decision problem.
在有限数量的步骤中确定给定语句公式是重言式还是矛盾性或最不能满足的问题称为决策问题。
范式的类型 (Types of Normal form)
1) Disjunctive Normal form
1)析取范式
We may use the word "product" in place of "conjunction" and "sum" in place of "disjunction".
我们可以用“乘积”代替“合取” ,用“和”代替“析取” 。
A product of the variable and their negations in a formula is called an elementary product. Similarly, a sum of the variables and their negations is called as an elementary sum.
变量及其在公式中的求反的乘积称为基本乘积。 类似地,将变量及其否定之和称为基本和。
Some statements hold for elementary sums and product:
一些语句适用于基本和和:
For any elementary product, the necessary condition is false is when it contains at least one pair of a factor in which one is the negation of the other.
对于任何基本产品,必要条件为假,因为它包含至少一对因素,其中一个因素是另一个因素。
For any elementary sum, the necessary condition is true when it contains at least one pair of factors in which one is the negations of the other.
对于任何基本和,当必要条件包含至少一对因素(其中一个是另一个的否定)时,该必要条件为真。
2) Conjunctive normal form
2)合取范式
The conjunctive normal form of a given formula is the one which contains the product of elementary sums (that formula is equivalent in the given formula).
给定公式的合取范式是包含基本和的乘积的公式(该公式在给定公式中是等效的)。
Observations
观察结果
The procedure for obtaining a formula in conjunctive normal form is quite similar to that of disjunctive normal form.
获得合取范式的公式的过程与合取范式的过程非常相似。
The conjunctive normal form is not unique.
合并范式不是唯一的。
A given formula will be identical if every elementary sum presents in its conjunctive normal form are identically true.
如果每个以合取范式形式存在的基本和都相同,则给定的公式将相同。
The 3 hold if every elementary sum present in the formula has at least two factors in which one is the negation of the other.
如果公式中存在的每个基本和都具有至少两个因素,其中一个是另一个的否定,则3成立。
3) Principle Disjunctive normal form
3)原理析取范式
Suppose, P and Q are two variables. We construct all possible formulas which consist of a conjunction of P or in negation and conjunction of Q or its negation. Now of the formulas should contains both a variable and its negation. For two variables P and Q there is 2^2 such formula.
假设P和Q是两个变量。 我们构造所有可能的公式,这些公式包括P或负数的和与Q或其负数的和。 现在,公式应同时包含变量及其取反。 对于两个变量P和Q,有2 ^ 2这样的公式。
These formulas are called minterms or Boolean conjunction of p and Q from the truth tables of theses minterms, it is clear that no two minterms are equivalent. Each minterm has the truth value T for exactly one combination of the truth value of the variables P and Q.
这些公式被称为minterms或这些minterm的真值表中的p和Q的布尔和,显然没有两个minterm是等效的。 每个最小项的真值T恰好是变量P和Q的真值的一个组合。
For a given formula an equivalent formula consisting of a disjunction of minterms only is known as its principle disjunction normal form. Such a normal form is also said to be the sum-product canonical form.
对于给定的公式,仅由最小项的析取组成的等效公式被称为其主析取范式。 这样的范式也被称为和积规范形式。
4) Principle conjunctive normal form
4)原理合取范式
Given a number of variables maxterm of these variables is a formula which consists of disjunction in which each variable or its negations but not both appear only once. Observe that the maxterm are the duals of minterms. Therefore each of the maxterm has the truth value F for exactly one combination of the truth values of the variables.
给定多个变量,这些变量的maxterm是一个由析取组成的公式,其中每个变量或其取反(但不是同时取反)仅出现一次。 观察到的最大项是小项的对偶。 因此,对于变量的真值的一个准确组合,每个maxterm都有真值F。
The principle of conjunctive normal form or the product-sum canonical form, the equivalent formula consists of only the conjunction of the maxterms only.
合取范式或乘积和 范式的原理 ,等效公式仅由maxterm的合词组成。
翻译自: https://www.includehelp.com/basics/normal-forms-and-their-types.aspx
离散数学范式