[离散数学]命题逻辑P_7:范式


前言

第七讲:范式

数理逻辑,就是用数学的方法研究逻辑推理的规律。

命题公式( p r o p o s i t i o n a l f o r m u l a propositional formula propositionalformula)亦称合式公式,是数理逻辑术语,它是按照一定规律形成的符号序列,在命题演算中,公式通常用归纳定义给出。

范式从本质上讲是一种理论体系、理论框架。在该体系框架之内的该范式的理论、法则、定律都被人们普遍接受。开展科学研究、建立科学体系、运用科学思想的坐标、参照系与基本方式,科学体系的基本模式、基本结构与基本功能。

从而,我们希望能够找到一种公式的标准形式,这种形式能够让我们更容易地研究公式的真值情况,即范式。

本文范式是命题逻辑的第七部分。


1. 范式定义

基本术语

引入范式:
真值表能够方便的给出命题公式的真值情况,但真值表的规模随命题变元的数量呈指数形式增长,因而我们考虑一种真值表的替代方法,这种方法是基于命题公式的一种标准形式。

  • 命题变元或命题变元的否定称为文字 P , ¬ P , Q , ¬ Q , … P,\lnot P,Q,\lnot Q,… P,¬P,Q,¬Q,
  • 有限个文字的析取称为简单析取式(或子句)。 P ∨ Q ∨ ¬ R , … P \lor Q \lor \lnot R,… PQ¬R,     P , ¬ P P,\lnot P P,¬P
  • 有限个文字的合取称为简单合取式(或短语)。 ¬ P ∧ Q ∧ R , … \lnot P \land Q \land R,… ¬PQR,     P , ¬ P P,\lnot P P,¬P
  • P P P ¬ P \lnot P ¬P称为互补对

有限个包含一个,因此一个文字也可以称为字句或者短语

范式定义

  • 有限个简单 合取式(短语)的 析取式 称为析取范式(disjunctive normal form);
    ( P ∧ Q ) ∨ ( ¬ P ∧ Q ) (P\land Q)\lor (\lnot P \land Q) (PQ)(¬PQ)又如 P ∧ ¬ Q P \land \lnot Q P¬Q P , ¬ P P,\lnot P P,¬P
  • 有限个简单 析取式(短语)的 合取式 称为合取范式(conjunctive normal form);
    ( P ∨ Q ) ∧ ( ¬ P ∨ Q ) (P\lor Q)\land (\lnot P \lor Q) (PQ)(¬PQ)又如 P ∨ ¬ Q P \lor \lnot Q P¬Q P , ¬ P P,\lnot P P,¬P

例子

  1. P , ¬ P P,\lnot P P,¬P文字,短语,子句,析取范式,合取范式
  2. P ∨ Q ∨ ¬ R P \lor Q \lor \lnot R PQ¬R子句,合取范式,析取范式 ( P ∨ Q ∨ ¬ R ) (P\lor Q \lor \lnot R) (PQ¬R)子句,合取范式
  3. ¬ P ∧ Q ∧ R \lnot P \land Q \land R ¬PQR短语,析取范式,合取范式 ( ¬ P ∧ Q ∧ R ) (\lnot P \land Q \land R) (¬PQR)短语,析取范式
  4. P ∨ ( Q ∨ ¬ R ) P\lor (Q\lor \lnot R) P(Q¬R)即不是析取范式也不是合取范式,但转换为 P ∨ Q ∨ ¬ R P\lor Q \lor \lnot R PQ¬R后,即是析取范式和合取范式。

加上括号后只能看做整体,不能再拆分开来看。


2. 范式求解

范式存在定理

总结:

  1. 范式关注的是命题公式的当前书写形式;
  2. 单个的文字是子句、短语、析取范式,合取范式;
  3. 析取范式、合取范式仅含联结词集 { ¬ , ∧ , ∨ } \{\lnot ,\land, \lor\} {¬,,},且否定联结词仅出现在命题变元之前。

定理:
对于任意命题公式,都存在与其等价的析取范式和合取范式。

证明

由于联结词之间可以通过命题公式的基本等价关系进行相互的转换,所以可通过逻辑等价公式求出等价于它的析取范式和合取范式,具体步骤如下:

  1. 将公式中的 → , ↔ \rightarrow ,\leftrightarrow ,用联结词 ¬ , ∧ , ∨ \lnot , \land , \lor ¬,,来取代:
    E 20 : G → H = ¬ G ∨ H , E_{20}:G\rightarrow H = \lnot G \lor H, E20GH=¬GH,    (蕴含式)
    E 22 : G ↔ H = ( G → H ) ∧ ( H → G ) = ( ¬ G ∨ H ) ∧ ( ¬ H ∨ G ) E_{22}:G\leftrightarrow H = (G \rightarrow H)\land (H \rightarrow G)=(\lnot G \lor H)\land(\lnot H \lor G) E22GH=(GH)(HG)=(¬GH)(¬HG)    (等价式)
  2. 将否定联接词移到各个命题变元的前端,并消去多余的否定号:
    E 17 : ¬ ( ¬ G ) = G . E_{17}:\lnot(\lnot G) = G. E17¬(¬G)=G.    (双重否定律)
    E 18 : ¬ ( G ∨ H ) = ¬ G ∧ ¬ H ; E_{18}:\lnot(G \lor H) = \lnot G\land \lnot H; E18¬(GH)=¬G¬H;    (德摩根律)
    E 19 : ¬ ( G ∧ H ) = ¬ G ∨ ¬ H . E_{19}:\lnot(G \land H) = \lnot G\lor \lnot H. E19¬(GH)=¬G¬H.
  3. 利用分配律,可将公式化成一些合取式的析取,或化成一些析取式的合取:
    E 11 : G ∨ ( H ∧ S ) = ( G ∨ H ) ∧ ( G ∨ S ) ; E_{11}:G\lor(H\land S)=(G\lor H)\land(G\lor S); E11G(HS)=(GH)(GS);    (分配律)
    E 12 : G ∧ ( H ∨ S ) = ( G ∧ H ) ∨ ( G ∧ S ) . E_{12}:G\land(H\lor S)=(G\land H)\lor(G\land S). E12G(HS)=(GH)(GS).

对任意一个公式,经过以上步骤,必能化成与其等价的析取范式和合取范式。

例子

求公式 ( P → ¬ Q ) ∨ ( P ↔ R ) (P\rightarrow \lnot Q)\lor (P \leftrightarrow R) (P¬Q)(PR)的析取范式和合取范式。


         ( P → ¬ Q ) ∨ ( P ↔ R ) (P\rightarrow \lnot Q)\lor (P \leftrightarrow R) (P¬Q)(PR)
=       ( ¬ P ∨ ¬ Q ) ∨ ( ( ¬ P ∨ R ) ∧ ( ¬ R ∨ P ) ) (\lnot P\lor \lnot Q)\lor ((\lnot P \lor R)\land (\lnot R \lor P)) (¬P¬Q)((¬PR)(¬RP))
=       ( ( ¬ P ∨ ¬ Q ) ∨ ( ¬ P ∨ R ) ) ∧ ( ( ¬ P ∨ ¬ Q ) ∨ ( ¬ R ∨ P ) ) ((\lnot P\lor \lnot Q)\lor (\lnot P \lor R))\land ((\lnot P \lor \lnot Q)\lor (\lnot R \lor P)) ((¬P¬Q)(¬PR))((¬P¬Q)(¬RP))
=       ( ¬ P ∨ ¬ Q ∨ ¬ P ∨ R ) ∧ ( ¬ P ∨ ¬ Q ∨ ¬ R ∨ P ) (\lnot P\lor \lnot Q\lor \lnot P \lor R)\land (\lnot P \lor \lnot Q\lor \lnot R \lor P) (¬P¬Q¬PR)(¬P¬Q¬RP)
=       ( ( ¬ P ∨ ¬ P ) ∨ ¬ Q ∨ R ) ∧ ( ( ¬ P ∨ P ) ∨ ¬ Q ∨ ¬ R ) ((\lnot P\lor \lnot P) \lor\lnot Q \lor R)\land ((\lnot P\lor P) \lor \lnot Q\lor \lnot R ) ((¬P¬P)¬QR)((¬PP)¬Q¬R)
=       ( ¬ P ∨ ¬ Q ∨ R ) ∧ ( 1 ∨ ¬ Q ∨ ¬ R ) (\lnot P \lor\lnot Q \lor R)\land (1 \lor \lnot Q\lor \lnot R ) (¬P¬QR)(1¬Q¬R)
=       ( ¬ P ∨ ¬ Q ∨ R ) ∧ 1 (\lnot P \lor\lnot Q \lor R)\land 1 (¬P¬QR)1
=       ( ¬ P ∨ ¬ Q ∨ R ) (\lnot P \lor\lnot Q \lor R) (¬P¬QR)      ——合取范式
=       ¬ P ∨ ¬ Q ∨ R \lnot P \lor\lnot Q \lor R ¬P¬QR          ——析取范式

范式与真值

总结:

  1. 命题公式的析取范式可以指出公式何时为真,而合取范式可以指出公式何时为假,从而能够替代真值表。( ( ¬ P ∨ Q ) ∧ ( P ∨ ¬ R ) (\lnot P \lor Q)\land (P \lor \lnot R) (¬PQ)(P¬R) ¬ P ∨ ( ¬ Q ∧ R ) \lnot P\lor (\lnot Q\land R) ¬P(¬QR))

合取中一个为假则为假;
析取中一个为真则为真。

  1. 命题公式的范式表达并不唯一,比如对公式 ( P ∨ Q ) ∧ ( P ∨ R ) (P\lor Q)\land (P\lor R) (PQ)(PR)而言,对应的析取范式有很多∶
    P ∨ ( Q ∧ R ) P\lor (Q \land R) P(QR)
    ( P ∧ P ) ∨ ( Q ∧ R ) (P\land P) \lor(Q \land R) (PP)(QR)
    P ∨ ( Q ∧ ¬ Q ) ∨ ( Q ∧ R ) P\lor (Q \land \lnot Q) \lor (Q \land R) P(Q¬Q)(QR)
    P ∨ ( P ∨ R ) ∨ ( Q ∧ R ) P\lor (P \lor R) \lor (Q\land R) P(PR)(QR)
  2. 一般而言,求解范式时,需要进行最后的化简步骤;

总结

本文介绍了命题逻辑中的范式部分,对命题逻辑有深入的了解。

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

H3T

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值