时间序列-简介 (Time Series - Introduction)
A time series is a sequence of observations over a certain period. A univariate time series consists of the values taken by a single variable at periodic time instances over a period, and a multivariate time series consists of the values taken by multiple variables at the same periodic time instances over a period. The simplest example of a time series that all of us come across on a day to day basis is the change in temperature throughout the day or week or month or year.
时间序列是在一定时期内的一系列观察结果。 单变量时间序列由一个变量在一个周期内的定期时间实例所取的值组成,而多元时间序列由多个变量在一个周期内的相同周期性时间实例所取的值组成。 我们每个人每天遇到的时间序列的最简单示例是整个一天,一周,一个月或一年中温度的变化。
The analysis of temporal data is capable of giving us useful insights on how a variable changes over time, or how it depends on the change in the values of other variable(s). This relationship of a variable on its previous values and/or other variables can be analyzed for time series forecasting and has numerous applications in artificial intelligence.
时间数据的分析能够为我们提供有用的见解,以了解变量如何随时间变化,或者变量如何取决于其他变量的值变化。 可以将变量与其先前值和/或其他变量的这种关系进行分析,以进行时间序列预测,并在人工智能中具有许多应用。
翻译自: https://www.tutorialspoint.com/time_series/time_series_introduction.htm