CUDA 学习笔记三

本文介绍了如何使用NVIDIA提供的工具查询和管理GPU设备,包括CUDA Runtime API函数和nvidia-smi命令行工具。通过这些工具可以获取GPU的详细信息,如内存大小、时钟频率等,从而帮助设置内核执行配置并选择最佳GPU。
摘要由CSDN通过智能技术生成

device管理

NVIDIA提供了集中凡是来查询和管理GPU device,掌握GPU信息查询很重要,因为这可以帮助你设置kernel的执行配置。

本博文将主要介绍下面两方面内容:

  • CUDA runtime API function
  • NVIDIA系统管理命令行

使用runtime API来查询GPU信息

你可以使用下面的function来查询所有关于GPU device 的信息:

cudaError_t cudaGetDeviceProperties(cudaDeviceProp *prop, int device);

GPU的信息放在cudaDeviceProp这个结构体中。

代码

#include <cuda_runtime.h>

#include <stdio.h>

int main(int argc, char **argv) {

  printf("%s Starting...\n", argv[0]);

int deviceCount = 0;

cudaError_t error_id = cudaGetDeviceCount(&deviceCount);

if (error_id != cudaSuccess) {

printf("cudaGetDeviceCount returned %d\n-> %s\n",

(int)error_id, cudaGetErrorString(error_id));

printf("Result = FAIL\n");

exit(EXIT_FAILURE);

}

if (deviceCount == 0) {

printf("There are no available device(s) that support CUDA\n");

} else {

printf("Detected %d CUDA Capable device(s)\n", deviceCount);

}


int dev, driverVersion = 0, runtimeVersion = 0;

dev =0;

cudaSetDevice(dev);

cudaDeviceProp deviceProp;

cudaGetDeviceProperties(&deviceProp, dev);

printf("Device %d: \"%s\"\n", dev, deviceProp.name);

cudaDriverGetVersion(&driverVersion);

cudaRuntimeGetVersion(&runtimeVersion);

printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n",driverVersion/1000, (driverVersion%100)/10,runtimeVersion/1000, (runtimeVersion%100)/10);

printf(" CUDA Capability Major/Minor version number: %d.%d\n",deviceProp.major, deviceProp.minor);

printf(" Total amount of global memory: %.2f MBytes (%llu bytes)\n",(float)deviceProp.totalGlobalMem/(pow(1024.0,3)),(unsigned long long) deviceProp.totalGlobalMem);

printf(" GPU Clock rate: %.0f MHz (%0.2f GHz)\n",deviceProp.clockRate * 1e-3f, deviceProp.clockRate * 1e-6f);

printf(" Memory Clock rate: %.0f Mhz\n",deviceProp.memoryClockRate * 1e-3f);

printf(" Memory Bus Width: %d-bit\n",deviceProp.memoryBusWidth);

if (deviceProp.l2CacheSize) {

printf(" L2 Cache Size: %d bytes\n",

deviceProp.l2CacheSize);

}


printf(" Max Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d,%d), 3D=(%d,%d,%d)\n",

deviceProp.maxTexture1D , deviceProp.maxTexture2D[0],

deviceProp.maxTexture2D[1],

deviceProp.maxTexture3D[0], deviceProp.maxTexture3D[1],

deviceProp.maxTexture3D[2]);


printf(" Max Layered Texture Size (dim) x layers 1D=(%d) x %d, 2D=(%d,%d) x %d\n",

deviceProp.maxTexture1DLayered[0], deviceProp.maxTexture1DLayered[1],

deviceProp.maxTexture2DLayered[0], deviceProp.maxTexture2DLayered[1],

deviceProp.maxTexture2DLayered[2]);


printf(" Total amount of constant memory: %lu bytes\n",deviceProp.totalConstMem);

printf(" Total amount of shared memory per block: %lu bytes\n",deviceProp.sharedMemPerBlock);

printf(" Total number of registers available per block: %d\n",deviceProp.regsPerBlock);

printf(" Warp size: %d\n", deviceProp.warpSize);

printf(" Maximum number of threads per multiprocessor: %d\n",deviceProp.maxThreadsPerMultiProcessor);

printf(" Maximum number of threads per block: %d\n",deviceProp.maxThreadsPerBlock);


printf(" Maximum sizes of each dimension of a block: %d x %d x %d\n",

deviceProp.maxThreadsDim[0],

deviceProp.maxThreadsDim[1],

deviceProp.maxThreadsDim[2]);


printf(" Maximum sizes of each dimension of a grid: %d x %d x %d\n",

deviceProp.maxGridSize[0],

deviceProp.maxGridSize[1],

deviceProp.maxGridSize[2]);


printf(" Maximum memory pitch: %lu bytes\n", deviceProp.memPitch);


exit(EXIT_SUCCESS);

}

编译运行:

  1. $ nvcc checkDeviceInfor.cu -o checkDeviceInfor

  2. $ ./checkDeviceInfor

输出:

./checkDeviceInfor Starting...

Detected 2 CUDA Capable device(s)

Device 0: "Tesla M2070"

CUDA Driver Version / Runtime Version 5.5 / 5.5

CUDA Capability Major/Minor version number: 2.0

Total amount of global memory: 5.25 MBytes (5636554752 bytes)

GPU Clock rate: 1147 MHz (1.15 GHz)

Memory Clock rate: 1566 Mhz

Memory Bus Width: 384-bit

L2 Cache Size: 786432 bytes

Max Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536,65535), 3D=(2048,2048,2048)

Max Layered Texture Size (dim) x layers 1D=(16384) x 2048, 2D=(16384,16384) x 2048

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total number of registers available per block: 32768

Warp size: 32

Maximum number of threads per multiprocessor: 1536

Maximum number of threads per block: 1024

Maximum sizes of each dimension of a block: 1024 x 1024 x 64

Maximum sizes of each dimension of a grid: 65535 x 65535 x 65535

Maximum memory pitch: 2147483647 bytes

决定最佳GPU

对于支持多GPU的系统,是需要从中选择一个来作为我们的device的,抉择出最佳计算性能GPU的一种方法就是由其拥有的处理器数量决定,可以用下面的代码来选择最佳GPU。

int numDevices = 0;

cudaGetDeviceCount(&numDevices);

if (numDevices > 1) {

int maxMultiprocessors = 0, maxDevice = 0;

for (int device=0; device<numDevices; device++) {

cudaDeviceProp props;

cudaGetDeviceProperties(&props, device);

if (maxMultiprocessors < props.multiProcessorCount) {

maxMultiprocessors = props.multiProcessorCount;

maxDevice = device;

}

}

cudaSetDevice(maxDevice);

}

 

使用nvidia-smi来查询GPU信息

nvidia-smi是一个命令行工具,可以帮助你管理操作GPU device,并且允许你查询和更改device状态。

nvidia-smi用处很多,比如,下面的指令:

 

  1. $ nvidia-smi -L

  2. GPU 0: Tesla M2070 (UUID: GPU-68df8aec-e85c-9934-2b81-0c9e689a43a7)

  3. GPU 1: Tesla M2070 (UUID: GPU-382f23c1-5160-01e2-3291-ff9628930b70)

然后可以使用下面的命令来查询GPU 0 的详细信息:

 

$nvidia-smi –q –i 0

下面是该命令的一些参数,可以精简nvidia-smi的显示信息:

MEMORY

UTILIZATION

ECC

TEMPERATURE

POWER

CLOCK

COMPUTE

PIDS

PERFORMANCE

SUPPORTED_CLOCKS

PAGE_RETIREMENT

ACCOUNTING

比如,显示只device memory的信息:

 

  1. $nvidia-smi –q –i 0 –d MEMORY | tail –n 5

  2. Memory Usage

  3. Total : 5375 MB

  4. Used : 9 MB

  5. Free : 5366 MB

设置device

对于多GPU系统,使用nvidia-smi可以查看各GPU属性,每个GPU从0开始依次标注,使用环境变量CUDA_VISIBLE_DEVICES可以指定GPU而不用修改application。

可以设置环境变量CUDA_VISIBLE_DEVICES-2来屏蔽其他GPU,这样只有GPU2能被使用。当然也可以使用CUDA_VISIBLE_DEVICES-2,3来设置多个GPU,他们的device ID分别为0和1.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值