目录
大家使用的服务器中有多个GPU,而这个大服务器又在被很多人使用,比如你的课题组的同学。
为了资源合理分配,不占用别人正在使用的GPU,我们可以指定自己要使用的GPU组(也就是在你的代码中使用的某一个或某几个GPU),这样就很有效的避免了GPU的资源占用,实现资源的最大化,也不用因为占用特别大的GPU被课题组的“拉黑举报”了!HHH~~~
选择特定的GPU组运行程序可在程序运行命令前,如【train.py】开头部分使用如下命令:
CUDA_VISIBLE_DEVICES=0
0为服务器中的GPU编号,可以为0, 1, 2, 3等,表明对该程序LInux服务器可见的GPU编号。
1. 命令讲解
CUDA_VISIBLE_DEVICES=1
【代码注释】我们设置服务器中只有编号为1的GPU组对程序是可见的。
在程序中,系统会对我们刚才设置的GPU组进行重新编号,从【0】开始。当我们在程序中【device】位置设置成【GPU 0】 ,那么,我们就会使用原服务器中的编号为1的GPU。
CUDA_VISIBLE_DEVICES=2,1,4
【代码注释】我们设置服务器中只有编号为2、1、4三块GPU组成的GPU组对程序是可见的。
在程序中,系统会对我们刚才设置的GPU组进行重新编号,从【0】开始,一直到【2】结束。此时【0】对应的是原服务器中的编号为2的GPU,【1】对应的是原服务器中的编号为1的GPU,【2】对应的是原服务器中的编号为4的GPU。
当我们在程序中【device】位置设置成【GPU 1】,那么,我们就会使用原服务器中的编号为1的GPU。
【注意】系统给我们GPU组排列的顺序是从【0】开始,是对我们预先设置好的GPU组进行重排布。
2. 高效使用
临时使用代码设置:
【Linux端】CUDA_VISIBLE_DEVICES设置成你要使用GPU组
export CUDA_VISIBLE_DEVICES=1
【windows】 CUDA_VISIBLE_DEVICES设置成你要使用GPU组
set CUDA_VISIBLE_DEVICES=1
永久使用代码设置:
【Linux端】
在~/.bashrc 的最后加上export CUDA_VISIBLE_DEVICES=1,然后source ~/.bashrc
【windows】
打开【我的电脑】在环境变量设置的地方,直接添加就可以
还有一种方法是在你的【train.py】文件里开头位置这代码
import os
下面加上下面的这句话:
os.environ['CUDA_VISIBLE_DEVICES']='1'
这句话的意思是,本次运行【train.py】文件使用的是第一块和第二块显卡,具体使用第几块就看自己的需求了。
最后的效果是这样的:
然后再次运行就可以了。
高效使用服务器的GPU的方法就到这结束了,欢迎关注蓝胖胖,咱们一起成长~~~