转行这几年 | 从传统行业到智驾,再到具身智能!

这是我们一个铁粉的投稿,记录了从传统行业到自驾再到具身的转型,分享给大家!

毕业那年,AI四小龙是香饽饽,只有学院的Top级大神才能进面试,我和大部分人一样是挂在了简历阶段。最后去了华子,里面对我们应届生方向是不确定的,所以在做了一年多车载系统测试相关的工作后,我觉得实在没啥意思,和我想做深度学习相关应用的初衷差了很多。

在经过一系列面试和选择后(华子的背景还是让我简历增光不少),我加入了一家智能交通行业内的龙头企业,做车牌识别,从YOLO到FasterRCNN,再到DETR,终于实际用上了这些喜欢的技术。

时间来到了2022年,我在单位干的风生水起,但大部分的工作已经非常熟悉,方案也趋向于稳定,更多的是在维护和做数据相关的工作,而此时外面已经翻天覆地,自动驾驶行业的激动人心的消息占比越来越多,也是这一年我结识了自动驾驶之心,从此成为我的星标公众号。

通过这个渠道,我认识了一系列的新的技术栈,单目3D目标检测、BEV等等,SOTA技术层出不穷。我意识到这个行业的又一个春天来了。我经过深思,并有幸和自动驾驶之心的创始人交流取经,决定转行自动驾驶。

那个时候,BEV是热门方向,当时学习了一些论文和自动驾驶之心的课程。因为课程本身比较前沿,讲的也比较仔细,吃透后就去面试了。后面获得了很多公司(有新势力车企,有供应商)的offer,最后选择去了一家可换电的新势力车企,薪资确实香,做BEV方向,当时公司氛围也非常棒。Tesla的AI Day视频和自动驾驶之心的课程成为我后面工作之余充电的主要资料,也结识了很多自动驾驶行业的大佬,解惑了很多,技术人真的非常nice。

国内受Tesla AI Day的影响,很多技术都是亦步亦趋的,当马斯克的Optimus机器人出来的时候,确实让我感到有点震惊,事实证明,从那个时候开始,很多人已经在开始往这个方向创业了。

2024年开始,Sora出现,我当时就看个热闹,但发现后面世界模型也在自动驾驶行业开始出很多SOTA的工作,并且在当下热门的具身智能领域也大放异彩。这一年,非常多的具身智能公司涌现出来,最印象深刻的还是“稚晖君”站台的智元机器人。特斯拉的“We,Robot”发布会加速了具身智能的热点效应,以至于今年很多同事在跳槽的时候,都被猎头推荐很多具身智能相关公司,薪资比同级的智驾高不少。

外面的诱惑是很大的,而智驾也确实在内卷中,随着公司销量和烧钱的不成比例,我又站在了选择的十字路口。这个时候又让我结识了具身智能之心,不得不说是缘分,我又和他们交流了很多次,具身领域比之前的市场和技术难度都要大,前期的智驾相关技术可以应用上去,新的大模型技术也在各行各业开花结果,而且整体属于发展初期,总结就是:大有可为。我决定出手,能在当打之年,连续踩到行业发展的红利是可遇不可求的,于是继续准备面试。具身智能之心知识星球再一次帮助了我,短时间内完成了各项准备,拿到了字节、阿里、智元等多家公司的offer。风口上,结识更多的同道中人相互交流非常重要,压力不一定是动力,坑也不一定是经验。

具身智能,我们从这里开始...

接下来说说我们自己,24年的7月份,团队几个小伙伴围着一个宇树机器狗的视频看了起来,做着各种高难度的动作,想象着后面所有可能的应用。不禁感叹,具身智能有点像16年的自动驾驶,一切都那么有希望。于是乎,还是想多为行业做点事情,我们就想筹划做起来具身智能之心。

半年的时间,我们具身智能之心知识星球做到了近1000人的规模。从开始接触西湖大学、清华大学、港科大、新加坡国立、斯坦福等高校,到陆续邀请了各家公司与其它高校,足足100+机构了。目前近30个嘉宾答疑,满满的安全感,我们的具身智能从这里开始了......

具身智能广义上是指具有物理身体的智能体,能够与环境进行互动,感知周围世界,自主学习、决策并执行任务。说到这里,像人形机器人、四足机器人、机械臂系统、自动驾驶系统算广义上的具身智能,能够感知周围环境并作出反应或执行。GPT这类大模型从狭义上理解,当然也可以算。如果再来看工业界的产品落地,扫地机也是,只是没有那么智能罢了!

d1581309fe39b79b9f1a80ff49f0075e.png

无论是特斯拉的擎天柱,抑或波士顿动力的大狗or大牛,都在解决一个事情,那就是通用人工智能。行业期望双足机器人能够类人工作劳动,比如产线机器人、陪伴机器人、服务机器人等;期望多足机器人能够完成搬运、巡检、救援等工作,将人类从无趣或危险的场景中解救出来,减少人力成本。

具身智能开始备受青睐

依托于AI技术的快速发展,以及各类芯片的算力提升。硬件、数据和算法相比于之前纯机器人时代已经有着大幅度提升,更多智能的技术可以快速应用到具身领域,比如自动驾驶领域的端到端、感知、规划等,大模型技术、SLAM这类建图定位、位姿估计、机械臂动力学等等。

如何将多类领先的技术和物理实体结合,是很多顶尖科研机构和机器人AI公司一直在突破的。国外有波士顿动力、特斯拉擎天柱这类具有代表性的四足和人形机器人;国内像宇树科技、云深处、智元机器人、还有各大厂的机器人实验室都在不断攻克难关,期望能够推动社会的生产变革。

8bc578384aceaf15c0d669b0d78508e3.png

软件算法与硬件都具备较高的感知和实时能力,资本自然也非常看好,可以说具身的市场绝不亚于那时的自动驾驶,相关的融资事件与岗位招募逐渐拉升,前景满满,也促使了相当多的从业者转向具身智能。

具身智能知识星球

具身智能之心知识星球是国内首个具身智能开发者社区,也是目前该领域最大的知识付费社区,已经近1000人啦!创建的出发点是给大家提供一个具身相关的技术交流平台。星球内部主要关注具身智能相关的数据集、开源项目、 具身仿真平台、大模型、视觉语言模型、强化学习、具身智能感知定位、机器臂抓取、姿态估计、策略 学习、轮式+机械臂、双足机器人、四足机器人、大模型部署、端到端、规划控制等方向。

我们为大家汇总了近40+开源项目、近60+具身智能相关数据集、行业主流具身仿真平台、强化学习全栈学习路线、具身智能感知学习路线、具身智能交互学习路线、视觉语言导航学习路线、触觉感知学习路线、多模态大模型学理解学习路线、多模态大模型学生成学习路线、大模型与机器人应用、机械臂抓取位姿估计学习路线、机械臂的策略学习路线、双足与四足机器人开源方案、具身智能与大模型部署等方向,涉及当前具身所有主流方向。

切记,学习不要单打独斗,有更多人一起学习会更好。

为了促进行业的发展,我们前期希望更多优秀的人加入我们,邀请各位在未来5-10年和我们一起输出相关技术与行业最新干货,欢迎微信扫码关注。

7451ff7cf4cc854bb61298ab9e47401b.png

加入星球有哪些福利?

  • 第一时间掌握具身智能相关的学术进展、工业落地应用;

  • 和行业大佬一起交流工作与求职相关的问题;

  • 优良的学习交流环境,能结识更多同行业的伙伴;

  • 具身智能相关工作岗位推荐,第一时间对接企业;

  • 行业机会挖掘,投资与项目对接

星球内容一览

0)国内外具身智能高校汇总

星球内部为大家汇总了具身智能多个研究方向的国内外知名实验室,供大家后期读研、申博、博后参考。

03b61635dfc20ea8b91e45734e0b6861.png

1)国内外具身智能公司汇总

星球内部为大家汇总了各类国内外各类具身相关机器人公司,涉及教育、宠物、工业、救援、物流、交互、医疗等方向。

b2f374b1f794cb296800c6f9578da0cb.png

2)具身智能研报汇总

星球内部为大家汇总了大模型、人形机器人等行业相关的研报,第一时间了解行业的发展与工业的落地情况。

0966652f1f90709bec2254dbf7a45fd2.png

3)机器人相关书籍汇总

星球内部汇总了机器人导航、概率机器人、机器人动力学与运动学、路径规划、机器人视觉控制等多个方向的PDF书籍,供大家做基础学习。

28f03bf03c3a89440881131c5960802a.png

4)具身智能零部件品牌汇总

我们内部为大家汇总了机器人行业知名的零部件制造厂商,涉及芯片、激光雷达、相机、IMU、底盘等。

cb82eb6505e2ea533e5b3de1460e944a.png

5)开源项目汇总

星球内部针对机器人仿真项目、机器人抓取、机器人控制、具身交互、具身感知等多个领域的开源项目进行了汇总,助力快速上手。

428f5370ef987dd189d32d011cb8509a.png

6)具身智能数据集

针对具身感知、触觉感知、导航、问答、大模型、视觉语言模型、端到端、机械臂抓取、控制规划多个领域的开源数据集进行了汇总,再也不用担心找不到可用的数据集了。

d00cc68dad18cb5f78c0e81080c8f8d5.png

7)具身智能仿真平台汇总

星球内部针对通用机器人仿真平台和真实场景仿真平台进行了汇总,机器人仿真这里全都有!

2af1c0c7d757994f7103b1d881146bb7.png

8)强化学习路线汇总

我们为大家汇总了基于LLM的强化学习、可解释强化学习、深度强化学习主流方案,一览各个子领域的应用训练。

aedd33c1ef806034ad0f0d6f9c0f3105.png

9)具身智能感知学习路线

内部针对主动视觉感知、3D视觉感知定位、视觉语言导航、触觉感知等多个任务进行了汇总,具身感知路线,一网打尽。

f21b1f6ed265ed4fe910da28ada1f4cb.png

10)具身智能交互

星球内部为大家汇总了具身智能与环境交互相关工作,涉及抓取、检测、视觉语言模型、具身问答、gaussian splatting等多块内容。

c50602e2a268e7422fa2ace0001d37f6.png

11)视觉语言导航

针对视觉语言导航、规划等多个应用内容,星球内部进行了详细的汇总,关注自动驾驶与机器人应用。

ee93d6e64d49128150e5d77b5c855bac.png

12)触觉感知

我们汇总了触觉感知最新综述、传感器应用、多模态算法集成、数据集等多项内容,让大家对这一前沿应用有着深刻了解。

3ede280b75f3b86da9278fabb99983e5.png

13)多模态大模型理解

星球内部汇总了大量多模态大模型理解相关内容,  包括但不限于Image+Text到Text、 Video+Text到Text、 Audio+Text到Text、 3D+Text到Text、Many到Text等。

2688a8bb069432fb50f20d78b6c01740.png

14)多模态大模型生成

除了多模态大模型理解,星球内部也汇总了大量多模态大模型生成相关内容,包括Image+Text到Image+Text、Video+Text到Video+Text、 Audio/Speech+Text到Audio/Speech+Text、Many到Image+Text、Many到Many等。

c6859728dbf4b8cd10f134ff7c2ee69a.png

15)视觉-语言-动作

内部为大家汇总了主流的VLA模型相关内容,一览最新视觉-语言-动作相关进展。

79df929648be9747a8a1ffe2cde61cd3.png

16)大模型微调与量化推理

cb85012ca8b2d8cd9fadda22aa35d5aa.png

17)大模型部署相关

针对大模型部署框架、大模型轻量化方法等进行了汇总,助力落地。

408f9b38c82f672781d271f1720850b1.png

18)机械臂抓取

针对机械臂抓取、任务数据表示、位姿估计、策略学习多个部分展开了汇总。

4913bc5d1bbd8c41f66408b409a4e7dc.png

19)双足与四足机器人

星球内部对开源的双足与四足机器人项目、仿真、源码、硬件等部分进行了详细的汇总,助力从零搭建你的机器人。

bc3157a97671a1a65213936b74c453b0.png

20)四足/轮式+机械臂

针对常用的移动+执行硬件方案进行了汇总,助力大家快速搭建属于自己的系统。

4ea94b3296f3a777e34bc3113c1a681b.png

星球内部交流

星球成员可以在星球内部自由提问,无论是工作选择还是研究方向选择,都能得到解答~

d3ce31e82ecbefcbb2de075bfea7a73e.png 7bbb22d84a286b3b2952a8049f0ffcca.png 93f2d85ad9b43dafd76a4e323672f3a2.png

扫码加入

欢迎加入具身智能之心知识星球,平均每天不到5毛钱,国内首个具身智能交流社区,这里将承担未来5-10年的技术输出与行业关注,欢迎微信扫码加入。

c0fc7d315562faf504288cec107ac7be.png

内容概要:该论文聚焦于6G通信中20-100GHz频段的电磁场(EMF)暴露评估问题,提出了一种基于自适应可重构架构神经网络(RAWA-NN)的预测框架。该框架通过集成权重分析模块和优化模块,能够自动优化网络超参数,显著减少训练时间。模型使用70%的前臂数据进行训练,其余数据用于测试,并用腹部和股四头肌数据验证模型泛化能力。结果显示,该模型在不同参数下的相对差异(RD)在前臂低于2.6%,其他身体部位低于9.5%,可有效预测皮肤表面的温升和吸收功率密度(APD)。此外,论文还提供了详细的代码实现,涵盖数据预处理、权重分析模块、自适应优化模块、RAWA-NN模型构建及训练评估等内容。 适合人群:从事电磁兼容性研究、6G通信技术研发以及对神经网络优化感兴趣的科研人员和工程师。 使用场景及目标:①研究6G通信中高频段电磁暴露对人体的影响;②开发更高效的电磁暴露评估工具;③优化神经网络架构以提高模型训练效率和预测精度。 其他说明:论文不仅提出了理论框架,还提供了完整的代码实现,方便读者复现实验结果。此外,论文还讨论了未来的研究方向,包括扩展到更高频段(如300GHz)的数据处理、引入强化学习优化超参数、以及实现多物理场耦合的智能电磁暴露评估系统。建议读者在实际应用中根据具体需求调整模型架构和参数,并结合真实数据进行验证。
内容概要:本文是北京金融科技产业联盟发布的《基于数据空间的金融数据可信流通研究报告》,探讨了金融数据可信流通的现状、挑战和发展前景。文章首先介绍了金融数据在数字化转型中的重要性及其面临的隐私保护和安全挑战。接着,文章详细阐述了数据空间的概念及其发展历程,尤其是可信数据空间(TDM)在我国的发展情况。文中还深入分析了金融数据可信流通的典型应用场景、关键技术和方案架构,如数据访问控制、数据使用控制、智能合约、数据脱敏等。最后,文章展示了多个典型场景应用案例,如中信银行总分行数据流通管控、工银金租数据流通、银联安全生物特征支付等,并总结了当前可信数据空间建设中存在的法规、技术、标准和商业模式挑战,提出了相应的政策建议。 适用人群:金融行业从业者、数据安全管理人员、政策制定者、科技研发人员等。 使用场景及目标:①理解金融数据可信流通的重要性和挑战;②学习可信数据空间的关键技术和应用场景;③探索金融数据可信流通的具体实践案例;④了解当前可信数据空间建设的瓶颈和未来发展方向。 其他说明:本文不仅提供了详尽的技术和应用分析,还提出了具体的政策建议,有助于推动金融数据可信流通的健康发展。阅读本文可以帮助读者深入了解金融数据安全保护和高效利用的最佳实践,为相关政策和技术的发展提供参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值