康奈尔大学!自动驾驶和具身智能最新VLA综述~

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

写在前面 & 笔者个人理解

视觉语言动作(VLA)模型标志着人工智能的变革性进步,旨在将感知、自然语言理解和具体动作统一在一个计算框架内。本基础综述全面综合了视觉语言动作模型的最新进展,系统地组织了五个主题,这些主题构成了这一快速发展领域的格局。我们首先建立VLA系统的概念基础,追踪它们从跨模式学习架构到紧密集成视觉语言模型(VLM)、动作规划器和分层控制器的多面手代理的演变。我们的方法采用严格的文献综述框架,涵盖了过去三年发表的80多个VLA模型。关键进展领域包括架构创新、参数高效训练策略和实时推理加速。我们探索了不同的应用领域,如人形机器人、自动驾驶、医疗和工业机器人、精准农业和增强现实导航。该审查进一步解决了实时控制、多模态动作表示、系统可扩展性、对看不见的任务的泛化以及道德部署风险等方面的主要挑战。借鉴最新技术,我们提出了有针对性的解决方案,包括代理人工智能适应、跨实施例泛化和统一的神经符号规划。在我们的前瞻性讨论中,我们概述了一个未来的路线图,其中VLA模型、VLM和代理AI融合在一起,为社会一致、自适应和通用的实体代理提供动力。这项工作为推进智能、现实世界机器人和通用人工智能提供了基础参考。

  • 论文链接:https://arxiv.org/abs/2505.04769

前沿的更迭速度很快,有没有一个专业的技术社区一直follow学术界的前沿研究和工业界的量产落地?带着这个想法,我们打造了『自动驾驶之心知识星球』。我们为大家准备了大额优惠...

4000人专业自动驾驶社区!欢迎扫码加入~

图片

简介

在Vision-Language-Action(VLA)模型发展之前,机器人技术和人工智能的进步主要发生在独立的领域:能够看见和识别图像的视觉系统,能够理解和生成文本的语言系统,以及能够控制运动的动作系统。这些系统在各自的领域中表现良好,但在协同工作或处理新奇且不可预测的情况时存在困难。因此,它们难以理解复杂的环境或灵活应对现实世界的挑战。

将视觉、语言和动作系统整合到统一框架中的需求推动了VLA模型的发展。这种综合方法标志着从孤立能力到具备自适应性、通用性和智能性的具身代理的重大转变。VLA模型使机器人能够共同感知、理解语言并采取行动,克服了早期方法的碎片化问题,并为开发真正智能的具身系统铺平了道路。

本论文全面回顾了VLA模型的研究进展,包括其架构、训练方法、应用及面临的挑战。我们还探讨了未来研究方向,重点是如何进一步提升实时推理能力、数据效率和跨领域泛化性能。此外,我们将讨论VLA模型在家庭机器人、工业自动化和辅助技术等实际场景中的潜在应用。

通过此次综述,我们旨在阐明VLA模型的基础概念和架构原则,并提供系统的分析和展望。这不仅有助于澄清VLA模型与其前身的区别,还能为AI和机器人领域的研究人员提供有价值的参考,促进协作与创新。最终,我们的目标是推动智能现实世界机器人技术和通用人工智能的发展。

视觉-语言-行动模型的概念

视觉-语言-行动(VLA)模型代表了一类新的智能系统,能够共同处理视觉输入、解释自然语言,并在动态环境中生成可执行的动作。从技术上讲,VLA结合了视觉编码器(例如,卷积神经网络CNNs、视觉Transformer ViTs)、语言模型(例如,大语言模型LLMs、Transformer)以及策略模块或规划器,以实现任务条件控制。

进化与时间线

VLA模型的起源可以追溯到跨模态学习架构的发展历程。早期的尝试包括将视觉和语言处理结合起来的模型,但这些模型通常局限于特定的任务或领域。随着基于Transformer的大型语言模型(如ChatGPT)的成功发布,尤其是2022年11月推出的ChatGPT展示了前所未有的语义推理能力,研究人员受到启发,开始将语言模型扩展到多模态领域,整合感知和行动以应用于机器人技术。到了2023年,GPT-4引入了多模态能力,可以同时处理文本和图像,这进一步推动了物理动作的整合。

多模态集成:从孤立管道到统一代理

早期的系统通常是孤立的管道设计,分别处理视觉、语言和行动。然而,这种方法存在明显的局限性,尤其是在需要跨模态协作的任务中。VLA模型通过将多种模态的信息统一在一个框架中,克服了这些限制。例如,CLIP(2022)展示了如何通过联合训练视觉和语言嵌入来实现强大的跨模态理解。随后的研究进一步扩展了这一方向,通过引入动作模块,使模型能够根据视觉和语言输入生成相应的行动。

令牌化与表示:VLA如何编码世界

VLA模型的核心在于其对世界的编码方式。视觉输入通常通过预训练的视觉编码器转换为特征向量,而语言输入则通过Transformer模型进行处理。动作则被表示为数值或符号令牌,这些令牌可以是机器人电机命令的抽象形式。通过这种方式,VLA模型能够从配对的视觉、语言和轨迹数据中学习,从而显著提高机器人在未见过的对象上的泛化能力、对新语言指令的理解能力,以及在非结构化环境中的多步推理能力。

学习范式:数据来源与训练策略

VLA模型的学习范式主要依赖于大规模数据集和高效的训练策略。常见的数据来源包括模拟环境(如AI2-THOR和Matterport3D)和真实世界数据集(如COCO和Visual Genome)。为了提高训练效率,研究者提出了多种方法,包括迁移学习、对比学习和强化学习。例如,RT-1和RT-2模型通过在大规模机器人控制数据集上进行训练,展示了卓越的性能。

自适应控制与实时执行

VLA模型的一个关键挑战是如何在动态环境中实现自适应控制和实时执行。为此,研究者提出了多种创新方法,例如动态早退架构(Dynamic Early-Exit Architectures),可以在保持准确性的前提下显著减少计算负担。此外,一些模型还通过分层规划和在线强化学习来提高其适应性和鲁棒性。

总之,VLA模型通过整合视觉、语言和行动,标志着人工智能领域的一次重大进步。它们不仅为机器人技术提供了新的可能性,也为更广泛的应用场景(如自动驾驶、工业自动化和医疗机器人)奠定了基础。

Progress in Vision-Language-Action Models

Vision-Language-Action模型的挑战与局限性

Vision-Language-Action(VLA)模型面临着一系列相互关联的挑战,这些挑战阻碍了它们从研究原型转化为强大且实用的真实世界系统。首先,实现实时、资源感知推理仍然十分困难:像DeeR-VLA这样的模型通过动态提前退出架构在操作基准测试中减少了5到6倍的计算量,同时保持了准确性,但在复杂场景中的收益却有所减少。类似地,Uni-NaVid通过压缩以自我为中心的视频令牌实现了5赫兹的导航,但在高度模糊的指令下仍然表现不佳。

实时推理约束

VLA模型需要在动态环境中进行实时推理,这对计算效率提出了极高的要求。尽管一些优化技术(如量化和剪枝)显著降低了推理延迟,但复杂的多模态任务(如高精度物体操作或快速无人机导航)仍对硬件加速器和专用处理器(如GPU和TPU)提出了巨大需求。此外,现有的VLA模型通常依赖于大规模参数化网络,这进一步增加了部署成本和能源消耗。

多模态动作表示与安全保障

VLA模型需要将视觉、语言和动作信号统一为一致的表示形式,这在技术上具有挑战性。例如,如何将连续的物理动作(如机器人关节角度变化)与离散的语言指令或图像特征结合起来,仍然是一个未完全解决的问题。此外,确保安全性和可靠性是另一个关键问题。在实际应用中(如自动驾驶或医疗机器人),错误的动作可能导致严重后果,因此必须开发新的建模和评估标准来验证VLA系统的端到端安全性。

数据偏差、接地问题与对未见任务的泛化能力

VLA模型的性能高度依赖于训练数据的质量和多样性。然而,当前的数据集通常存在偏差(如偏向特定场景或语言模式),这限制了模型在新环境或任务中的泛化能力。此外,如何有效地将视觉和语言信息“接地”到具体的物理动作上,仍然是一个开放的研究问题。例如,在复杂的动态环境中,模型可能难以准确理解指令并生成适当的响应。

系统集成复杂性与计算需求

将VLA模型集成到现有机器人系统中涉及多个层次的技术挑战。从传感器数据的实时处理到动作规划器的无缝协作,每一步都需要仔细设计和优化。此外,VLA模型通常需要大量的计算资源来进行训练和推理,这对于资源受限的边缘设备(如小型无人机或移动机器人)来说是一个重大障碍。

VLA部署中的鲁棒性与伦理挑战

在真实世界中部署VLA模型还面临鲁棒性和伦理方面的挑战。例如,模型需要在噪声环境、不可预测的人类行为或极端天气条件下保持稳定性能。此外,随着VLA技术在军事、监控等敏感领域的应用增加,如何确保其符合道德规范并避免潜在滥用也成为一个重要议题。

总之,尽管VLA模型在理论和实验中取得了显著进展,但要将其转化为可靠、高效且广泛应用的智能系统,仍需克服许多技术和伦理上的障碍。这些问题的解决将决定VLA模型在未来人工智能和机器人领域的发展方向。

Vision-Language-Action模型的未来方向

Vision-Language-Action(VLA)模型的未来发展将集中在解决当前技术限制并扩展其在真实世界应用中的潜力。以下章节概述了几个关键的研究方向,这些方向有望推动VLA模型的进步,并为智能机器人和通用人工智能的发展铺平道路。

提高实时推理能力

为了使VLA模型能够在动态环境中高效运行,研究人员正在探索各种优化策略以提高推理速度和效率。其中包括模型压缩技术、量化方法以及专门硬件加速器的使用。此外,新的架构设计如DeeR-VLA展示了通过动态提前退出机制显著减少计算需求的潜力,同时保持任务性能。未来的努力将集中于进一步降低延迟并提升资源受限设备上的推理能力。

数据效率与泛化能力

当前VLA模型通常需要大量标注数据进行训练,这限制了其在数据稀缺场景中的应用。因此,开发能够从小样本中学习的高效模型成为重要研究方向。例如,通过元学习、迁移学习和自监督学习等方法,可以显著提高模型的数据效率和对未见任务的泛化能力。此外,如何有效整合多模态数据仍然是一个开放性问题。

安全性和可靠性保障

随着VLA模型在诸如自动驾驶、医疗机器人等高风险领域的应用增加,确保其安全性和可靠性变得尤为重要。研究人员正在探索新的建模和验证方法,以确保VLA系统在复杂环境中的稳定性和安全性。例如,SafeVLA项目提出了通过安全强化学习来对齐视觉、语言和动作的安全目标。

多模态表示与动作规划

改进多模态信号(视觉、语言和动作)的统一表示形式是另一个重要方向。现有模型在处理连续动作和离散指令之间的转换时仍存在困难,因此需要开发更灵活的动作表示方法。例如,SpatialVLM通过赋予模型空间推理能力,增强了其在物理环境中的适应性。

系统集成与协作

将VLA模型无缝集成到现有机器人平台中涉及多个层次的技术挑战。从传感器数据的实时处理到动作规划器的协同工作,每一步都需要精心设计。未来的研究将关注如何简化系统集成流程,并实现多机器人之间的高效协作。

鲁棒性与伦理考量

在现实世界中部署VLA模型还需要解决鲁棒性和伦理问题。例如,模型必须能够在噪声环境、不可预测的人类行为或极端条件下保持高性能。此外,随着VLA技术在军事、监控等敏感领域的应用增加,制定相应的道德规范以防止潜在滥用也成为重要议题。

总之,VLA模型的未来发展不仅依赖于技术创新,还需要跨学科合作和对社会影响的深入思考。通过解决上述挑战,VLA模型有望在家庭机器人、工业自动化和辅助技术等领域实现广泛应用,并最终推动智能机器人和通用人工智能的全面进步。

前沿的更迭速度很快,有没有一个专业的技术社区一直follow学术界的前沿研究和工业界的量产落地?带着这个想法,我们打造了『自动驾驶之心知识星球』。我们为大家准备了大额优惠,上半年仅此一次机会...

4000人专业自动驾驶社区!欢迎扫码加入~

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值