《Deepis Susceptibility Estimation on Social Networks》节点易感性,影响力预测的想法和一些改进

本文介绍了DeepIS算法,一种利用GNN预测社交网络中用户易感性的方法。文章详细阐述了GNN阶段的特征构建和粗粒度计算,以及传播阶段的迭代传播方案,旨在解决节点易感性估计问题。实验部分讨论了不同数据集上的性能,并对比了其他基线模型。
摘要由CSDN通过智能技术生成

影响力扩散问题大多集中于IM问题,设定seed set使得最终或特定时间点影响力/流行度最大。我们想要关注的是传播模型中每个用户被激活的概率。

Deepis这篇文章采用 GNN 来预测易感性susceptibility, 即每个用户被影响的概率。

估计易感性可以被视为节点上的回归任务

GNN通过堆叠multiple layers 来 aggregate multi-hop neighbor 的信息,这会导致过度平滑,并且不利于对单个节点预测任务

DeepIS:第一步,构建特征,将特送入 multi-layers GNN, 用于粗粒度(coarse-grained)的易感性估计;第二步,如何实现细粒度计算,提出了一个传播方案,将每个节点的估计值扩散到邻居间。我们设计了一个传播方程,其动机是随机行走过程的静止分布概念。由于影响力的扩散与随机行走有本质的不同,我们设计了一个迭代传播方案,考虑到扩散动力学的具体特征。该模型是以端到端方式进行训练的。我们注意到DeepIS是归纳式的,也就是说,我们可以在一个图上训练模型,然后在其他图上运行,这就避免了在大数据集上昂贵的再训练,并实现了实时影响分析。

DeepIS和MONSTOR与PPNP算法密切相关。MONSTOR专注于基于多个GNN的堆叠结构的IC模型下的节点的增量影响传播测定。By the way, 感觉MONSTOR算法可以关注一下,应该会有启发

这篇文章感觉主要受这两篇文章启发:

[19]  Johannes Klicpera, Aleksandar Bojchevski, and Stephan G ̈unnemann. 2019. Predict then propagate: Graph neural networks mee

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值