原题链接:AcWing 4740.跑圈
关键词:模拟
阿达正在一个长度为 L 的环形跑道上练习跑步。
为了更专注于跑步,阿达专门准备了一台机器来统计她跑的圈数。
机器放置在跑道的起跑线上,从 0 开始计数。
每当阿达离开起跑线时(直接越过起跑线或在起跑线位置处改变方向并离开起跑线),她的面朝方向就会被机器记录。
机器只会实时记录她最近一次离开起跑线时的面朝方向。
每当阿达到达起跑线位置时,只要其面朝方向与机器记录的上次离开起跑线时的面朝方向相同,机器计数就会加 1。
阿达从起跑线处开始跑步。
她的耐力有限,无法将计划的训练量一口气完成。
因此,每跑一段距离,她都会原地休息一段时间,用来恢复体力。
不幸的是,阿达的记忆力并不是很好,每当她休息完再次开始跑步时,她都会忘了之前面朝的方向。
这时,她只能随意选择一个方向(顺时针或逆时针),并面朝该方向从她停下的位置开始继续跑步。
具体的说,她一共进行了 N 段跑步,其中第 i 段跑步的距离为 Di,跑步时的面朝方向为 Ci。
请你计算,在阿达完成跑步后,机器最终记录的圈数。
输入格式
第一行包含整数 T,表示共有 T 组测试数据。
每组数据第一行包含两个整数 L,N。
接下来 N 行,每行包含一个整数 Di 和一个字符 Ci,分别表示阿达一段跑步的距离和面朝方向。Ci
只可能是 C(表示顺时针方向)或 A(表示逆时针方向)。
输出格式
每组数据输出一个结果,每个结果占一行。
结果表示为 Case #x: y,其中 x 为组别编号(从 1 开始),y 为一个非负整数,表示机器最终记录的圈数。
数据范围
- 1≤T≤100,
- 1≤L≤109,
- 1≤N≤104,
- 1≤Di≤109。
输入样例1:
2
5 3
8 C
3 C
6 C
8 4
5 C
9 C
8 C
20 C
输出样例1:
Case #1: 3
Case #2: 5
样例1解释
在 Case 1 中,环形跑道长度为 5。
阿达的跑步过程如下:
- 阿达朝向顺时针方向跑 8 单位长度,过程中触及起跑线,机器记录圈数加 1。此时沿顺时针方向从起跑线到阿达的距离为 3 单位长度。
- 阿达朝向顺时针方向跑 3 单位长度,过程中触及起跑线,机器记录圈数加 1,此时沿顺时针方向从起跑线到阿达的距离为 1 单位长度。
- 阿达朝向顺时针方向跑 6 单位长度,过程中触及起跑线,机器记录圈数加 1。
最终机器记录圈数为 3。
在 Case 2 中,环形跑道长度为 8。
阿达的跑步过程如下:
- 阿达朝向顺时针方向跑 5 单位长度。此时沿顺时针方向从起跑线到阿达的距离为 5 单位长度。
- 阿达朝向顺时针方向跑 9 单位长度,过程中触及起跑线,机器记录圈数加 1。此时沿顺时针方向从起跑线到阿达的距离为 6 单位长度。
- 阿达朝向顺时针方向跑 8 单位长度,过程中触及起跑线,机器记录圈数加 1。此时沿顺时针方向从起跑线到阿达的距离为 6 单位长度。
- 阿达朝向顺时针方向跑 20 单位长度,过程中 3 次触及起跑线,机器记录圈数加 3。
最终机器记录圈数为 5。
输入样例2:
3
5 3
8 C
4 A
5 C
4 5
2 C
8 A
3 A
5 C
8 A
4 3
3 C
2 A
5 C
输出样例2:
Case #1: 1
Case #2: 5
Case #3: 1
方法一:模拟
思路:
用正负来区分顺时针和逆时针,这样跑过去跑回来的部分自然而然会抵消
此外还用到了c++取摸的一个特性:正数取模的结果是正数,负数取模的结果是负数
C++ 代码:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
int t, l, n; // t样例数 l跑道长 n段数
int main(){
scanf("%d", &t);
for(int cases = 1; cases <= t; cases++){
scanf("%d %d", &l, &n);
ll ans = 0;
int x = 0; // x为上一段的结束坐标
while(n--){
int d; // 长度
char c; // 方向 C为顺时针 A为逆时针
scanf("%d %c", &d, &c);
if(c == 'A') d = -d; // 记顺时针方向为正数 逆时针方向为负数
x += d; // 加上这段走的路
ans += abs(x / l);
x %= l;
}
printf("Case #%d: %lld\n", cases, ans);
}
return 0;
}