CP8.可解性与解的结构

前言

方程组 A X = b AX=b AX=b,其中 A = [ 1 2 2 2 2 4 6 8 3 6 8 10 ] A=\begin{bmatrix}1&2&2&2\\2&4&6&8\\3&6&8&10\end{bmatrix} A= 1232462682810 方程组为 [ 1 2 2 2 2 4 6 8 3 6 8 10 ] [ x 1 x 2 x 3 x 4 ] = [ b 1 b 2 b 3 ] \begin{bmatrix}1&2&2&2\\2&4&6&8\\3&6&8&10\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\\x_4\end{bmatrix}=\begin{bmatrix}b_1\\b_2\\b_3\end{bmatrix} 1232462682810 x1x2x3x4 = b1b2b3
观察方程组的系数矩阵,第一行和第二行相加得到第三行,因此A矩阵的各行是线性相关的;消元求解的过程中, b i b_i bi 是增广矩阵的一部分,因此 b 1 + b 2 = b 3 b_1+b_2=b_3 b1+b2=b3才能够让方程组有解,下面进行消元处理。
[ 1 2 2 2 b 1 2 4 6 8 b 2 3 6 8 10 b 3 ] → [ 1 2 2 2 b 1 0 0 2 4 b 2 − 2 b 1 0 0 0 0 b 3 − b 2 − b 1 ] \begin{bmatrix}1&2&2&2&b_1\\2&4&6&8&b_2\\3&6&8&10&b_3\end{bmatrix}\rightarrow\begin{bmatrix}1&2&2&2&b_1\\0&0&2&4&b_2-2b_1\\0&0&0&0&b_3-b_2-b_1\end{bmatrix} 1232462682810b1b2b3 100200220240b1b22b1b3b2b1
如果 A X = b AX=b AX=b有解,必须满足 b 3 − b 2 − b 1 = 0 b_3-b_2-b_1=0 b3b2b1=0即, b 1 + b 2 = b 3 b_1+b_2=b_3 b1+b2=b3跟前面的推论一致。从增广矩阵的消元结果可以知道 x 2 , x 4 x_2,x_4 x2,x4是自由变量可以自由赋值。式子 A X = b AX=b AX=b其实可以看作是矩阵A左乘了X,本质上是对A的列向量进行线性组合,因此b必须要在A的列空间内,否则方程无解。

特解

从字面意义上看,特解应当是一个特殊的解,其特殊性在于我们可以对自由变量任意赋值,本例中我们用最简单粗暴的赋值 x 2 = x 4 = 0 x_2=x_4=0 x2=x4=0,那么方程组可以表达为: x 1 + 2 x 3 = b 1 2 x 3 = b 2 − b 1 x_1+2x_3=b_1\\2x_3=b_2-b_1 x1+2x3=b12x3=b2b1回顾前面说的,要让方程组有解, b i b_i bi务必满足 b 1 + b 2 = b 3 b_1+b_2=b_3 b1+b2=b3假设 b 1 = 1 , b 2 = 5 , b 3 = 6 b_1=1,b_2=5,b_3=6 b1=1,b2=5,b3=6,方程组可以表示为: x 1 + 2 x 3 = 1 2 x 3 = 4 x_1+2x_3=1\\2x_3=4 x1+2x3=12x3=4因此可以解除方程的解: x 3 = 2 , x 1 = − 3 x_3=2,x_1=-3 x3=2,x1=3,因此方程组的特解为:
x p = [ − 3 0 2 0 ] x_p=\begin{bmatrix}-3\\0\\2\\0\end{bmatrix} xp= 3020

通解

A X = b AX=b AX=b的通解是一个特解加上A的零空间。矩阵A的零空间是 A X = 0 AX=0 AX=0的两个解的线性组合,即 c 1 [ − 2 1 0 0 ] + c 2 [ 2 0 − 2 1 ] c_1\begin{bmatrix}-2\\1\\0\\0\end{bmatrix}+c_2\begin{bmatrix}2\\0\\-2\\1\end{bmatrix} c1 2100 +c2 2021 。因此方程 A X = b AX=b AX=b的通解是: x = [ − 3 0 2 0 ] + c 1 [ − 2 1 0 0 ] + c 2 [ 2 0 − 2 1 ] x=\begin{bmatrix}-3\\0\\2\\0\end{bmatrix}+c_1\begin{bmatrix}-2\\1\\0\\0\end{bmatrix}+c_2\begin{bmatrix}2\\0\\-2\\1\end{bmatrix} x= 3020 +c1 2100 +c2 2021 其中 c 1 , c 2 c_1,c_2 c1,c2是任意实数。

矩阵的秩就是矩阵的主元数,一般用 r r r表示,一个 m × n m \times n m×n的矩阵,必然满足 r ≤ m r\leq m rm r ≤ n r\leq n rn

列满秩

列满秩 r = n r=n r=n,实际上就是矩阵A中没有线性相关的列,方程的解中不存在自由变量,方程组有唯一解,或者无解。矩阵A的零空间只有零向量。

行满秩

行满秩 r = m < n r=m<n r=m<n,实际上是方程组之间线性无关,主变量 r r r个,自由变量 n − r n-r nr个。方程组必然存在解,但存在自由变量,因此有无限种可能

方阵满秩

方阵满秩 r = m = n r=m=n r=m=n,矩阵可逆,A的零空间只有零向量,无论 b b b取何值, A X = b AX=b AX=b都只有唯一解。

r = m = n r=m=n r=m=n r = n < m r=n<m r=n<m r = m < n r=m<n r=m<n r < n , r < m r<n,r<m r<n,r<m
R = I R=I R=I R = [ I 0 ] R=\begin{bmatrix}I\\0\end{bmatrix} R=[I0] R = [ I F ] R=\begin{bmatrix}I&F\end{bmatrix} R=[IF] R = [ I F 0 0 ] R=\begin{bmatrix}I&F\\0&0\end{bmatrix} R=[I0F0]
唯一解无解或唯一无穷多解无解或无穷多解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值