【问题描述】
设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。如下图所示(见样例):
0 0 0 0 0 0 0 0
0 0 13 0 0 6 0 0
0 0 0 0 7 0 0 0
0 0 0 14 0 0 0 0
0 21 0 0 0 4 0 0
0 0 15 0 0 0 0 0
0 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0
某人从图的左上角的A 点出发,可以向下行走,也可以向右走,直到到达右下角的B点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
【输入文件】
输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。
【输出文件】
只需输出一个整数,表示2条路径上取得的最大的和。
输入
输出
样例输入
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
样例输出
67
题解:
第一眼想到dfs,太水懒得写。
然后发现有个更好打的DP
f[i][j][u][v]表示从st出发的两条路,一条到了i,j,另一条到了u,v
状态转移详见代码。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
int n;
int map[20][20];
int f[20][20][20][20];
int main()
{
scanf("%d",&n);
while(1)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
if(a==0&&b==0&&c==0) break;
map[a][b]=c;
}
f[1][1][1][1]=map[1][1];
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
for(int u=1;u<=n;u++)
{
for(int v=1;v<=n;v++)
{
f[i][j][u][v]=max(f[i-1][j][u-1][v],max(f[i][j-1][u-1][v],max(f[i-1][j][u][v-1],f[i][j-1][u][v-1])));
f[i][j][u][v]+=map[i][j]+map[u][v];
if(i==u&&j==v) f[i][j][u][v]-=map[i][j];
}
}
}
}
printf("%d",f[n][n][n][n]);
}