题目描述:
在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示。例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7)。
这些点可以用 k 个矩形(1<=k<=4)全部覆盖,矩形的边平行于坐标轴。当 k=2 时,可用如图二的两个矩形 s1,s2 覆盖,s1,s2 面积和为 4。问题是当 n 个点坐标和 k 给出后,怎样才能使得覆盖所有点的 k 个矩形的面积之和为最小呢。约定:覆盖一个点的矩形面积为 0;覆盖平行于坐标轴直线上点的矩形面积也为0。各个矩形必须完全分开(边线与顶点也都不能重合)。
输入:
格式为
n k
xl y1
x2 y2
… …
xn yn (0<=xi,yi<=500)
输出:
一个整数,即满足条件的最小的矩形面积之和。
题解:
dfs加剪枝,枚举每个点在不同的矩形。
如果它本身就被包含在矩形里,直接搜下一个点,否则,根据这个点的坐标来扩大矩形
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<iostream>
#define INF 1e7
using namespace std;
int n,k;
struct node{
int x,y;
}sa[60];
struct node2{
node l,r;
}sb[10];
int ans=INF;
bool checkit(int i,int j)
{
if(s