Description
JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。
JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任
何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。
例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的
分配方法:
A:麻花,B:麻花、包子
A:麻花、麻花,B:包子
A:包子,B:麻花、麻花
A:麻花、包子,B:麻花
Input
输入数据第一行是同学的数量N 和特产的数量M。
第二行包含M 个整数,表示每一种特产的数量。
N, M 不超过1000,每一种特产的数量不超过1000
Output
输出一行,不同分配方案的总数。由于输出结果可能非常巨大,你只需要输出最终结果
MOD 1,000,000,007 的数值就可以了。
题解:
容斥原理。一开始没想通,睡了一觉似乎懂了(蒟蒻太菜)
因为题目要求一定要每个同学至少有一个特产,所以我们可以先
假设没有这个限制,那么题目就可以转换成n个相同的球放入m个不同的盒子里(听说是道高考题)
C[a[j]+i-1][i-1]
我们一个人一个人的来搞,最后再减去不合法的,
可以暴力枚举有一个位置是空,两个位置是空。。。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define mod 1000000007
const int N=2010;
using namespace std;
int n,m;
ll c[N][N];
void before()
{
for(int i=0;i<=2000;i++)
{
c[i][0]=1;
for(int j=1;j<=i;j++)
{
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
}
}
return;
}
ll a[N];
ll f[N];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)scanf("%d",&a[i]);
before();
for(int i=1;i<=n;i++)
{
f[i]=1;
for(int j=1;j<=m;j++)
f[i]=((ll)f[i]*c[a[j]+i-1][i-1])%mod;
for(int j=1;j<i;j++)
f[i]=(f[i]-((ll)f[j]*c[i][i-j])%mod+mod)%mod;
}
printf("%lld",f[n]);
}