带环链表详解

序言

什么是带环链表
在这里插入图片描述
这是特殊的代换链表,尾结点的指针指向的是头结点,也称循环链表,但是今天主要分析的是类似于这样的
在这里插入图片描述
尾结点的指针不是指向头结点的这种代换链表
在这里插入图片描述
这是一个带环链表的大致图,下面我们展开讨论
在分析之前先给两个题目
链表存在问题

链表入口点

快慢指针追击问题

先设置一个快指针fast 再设置一个慢指针slow 二者的出发点都是一样的,
在这里插入图片描述
我们需要分析的是当两个指针都进入链表的时候,fast是否一定追上slow直到在某个点相遇
在这里插入图片描述
1 当fast每次走两步的时候,slow每次走一步的时候,一定能追上吗?
2 当fast每次走三步甚至是四步的时候 slow每次只走一步,一定能追上吗?

在这里插入图片描述
由上述分析可知,当fast每次走两步slow每次走一步,那么他们肯定会在环中某个点相遇。
但是当fast每次走的步数大于2呢? 答案是不一定追上
在这里插入图片描述
分析:(fast为3slow为1)
当slow在环入口的时候,此时二者的距离是X 此时二者的相对速度是2
1 当X是偶数时 他们的距离会变成X-2 X -4 X-6 直到0 那么这个时候也可以相遇
2 当X时奇数时,那么距离最后会变成-1 此时二者的距离又会重新变成C-1
在这里插入图片描述
我们进而要讨论的时C-1了
1 当C-1是偶数时 此时可以相遇
2 当C-1 是奇数时,fast跟slow永远都不会相遇
所以可以得出 当fast时4,5 等等
都得各种可能 ,因为X的值与C-1的值都是不确定的 有无限种可能,在这就不一一分析了

环入口点分析

此时fast默认是肯定值2 slow是1
在这里插入图片描述
分析:
在这里插入图片描述
当二者相遇的时候,我们设置相遇点与入口的距离是y,那么另外一边就是C-y
分析:
我们思考一个问题 相遇的时候slow走过一圈了吗?
答案是否定的 因为当slow在入口点的时候,二者的距离最多为C-1,二者的相对位移是1,如果slow走过一圈,那么fast早就走了两圈了,早就追到了,所以slow一共走的距离就是L+y
但是fast走的距离是多少呢?
是L+C+y吗?
fast就是我们想的那样比slow多走一圈吗?
不是的
当环很小的时候,在slow到达入口点的时候也许fast已经走很多圈了
当环很大的时候,在slow到达入口点的时候也许fast一圈都没走完
所以fast的走到距离是L+NC+y
然后二者的关系我用一张图表示吧
在这里插入图片描述

设置slow为meet 起点为head 二者同时往后寻找 相遇的时候就是入口点

如果不理解,极限假设,N = 1,此时C-y与L相等

下面我给出两道题的代码
链表存在问题

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     struct ListNode *next;
 * };
 */
bool hasCycle(struct ListNode *head) {
     struct ListNode *low = head;
      struct ListNode *fast = head;
      while(fast&&fast->next)
      {

          fast = fast->next->next;
          low = low->next;
          if(fast==low)
          return true;
      }
      return false;
}

链表入口点

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     struct ListNode *next;
 * };
 */
struct ListNode *detectCycle(struct ListNode *head) {
    struct ListNode *low = head;
      struct ListNode *fast = head;
      while(fast&&fast->next)
      {

          fast = fast->next->next;
          low = low->next;
          if(fast==low)
          {
              struct ListNode *meet = low;
              while(meet!=head)
              {
                      meet = meet->next;
                      head = head->next;
              }
              return meet;
          }
      }
      return NULL;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天少点debug

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值