Stable Diffusion放大器 StableSR超清无损放大图片,最大呈现出丰富的细节!

本文介绍了stableSR,一种强大的图像放大算法,不仅能放大stablediffusion生成的图像,还能处理网络图片,提供惊人的放大效果。文章指导了如何安装和使用该技术,以及AIGC技术的前景和发展趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前介绍了放大脚本Ultimate SD upscale

但是有一种极其重要的图像放大算法,名为stableSR。

今天,我们必须单独为大家介绍一下它。

这个算法不仅可以放大由stable diffusion生成的图像,即使你从网上随便下载一张图片,也能进行放大。

效果非常惊人。废话不多说,直接开始。

先去官方项目介绍页里看看

高清保真放大、消耗较少的显存、颜色修正

那实际用上的效果是怎么样的呢?

可以先跟着官方的教程来一步一步的安装

在这里我是直接去找这个插件的,点击安装直接就下载

安装完以后直接重启

接着就是去下载有关的模型

链接:https://huggingface.co/stabilityai/stable-diffusion-2-1

或者查看文末即可下载

下载完以后按照教程放到该路径下:stable-diffusion-webui/models/Stable-Diffusion/ 的文件夹中

接着就是继续下载一个官方的模块

链接:https://huggingface.co/Iceclear/StableSR/blob/main/webui_768v_139.ckpt

(大概400多M,下完以后放到table-diffusion-webui/extensions/sd-webui-stablesr/models/ 的文件夹中)

下完这个模块以后,就是去下载Tiled Diffusion & VAE 扩展(由于我之前下载过了,这里就不重复下载了)

一切准备就绪以后,就可以开始看看这个放大算法的厉害之处了

进入图生图里,选择刚刚下载的模型

接着放入图片

步数选30,方法选择Eulaer a

接着在脚本打开StableSR

看看这个扩展的官方使用说明

模型选择刚刚下载的

如果没有就点旁边的按钮来刷新一下

放大倍数我选择4倍,接着打开VAE插件和Tiled Diffusion点击启用,进行设置

设置完以后,生成看看(由于文件太大,上传不了只能截图)

与之前的图对比一下

经过放大处理,我们可以清楚地观察到保留了原有细节的效果,尤其是在局部区域。嘴唇上的细节高光和质感表现出色。

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
### Stable Diffusion 放大算法实现与技术 #### 采样过程中的扩散模型结构 在扩散模型中,每一个采样步骤都由特定的操作组成[^1]。这些操作通常涉及噪声预测以及如何基于当前状态更新图像表示。 对于Stable Diffusion而言,在放大过程中应用的技术可以分为几个方面: - **架构设计**:从简单的线性投影器和多层感知机(MLP),逐渐演变为更复杂的机制如交叉注意力模块、Q-Former 和 P-Former 等高级组件来增强特征提取能力[^2]。 - **训练方法优化**:采用知识蒸馏的方法减少推理所需的迭代次数而不损失质量。具体来说,通过分阶段的方式逐步降低所需步数——先是将标准50步版本压缩至16步,再进一步精炼成仅需8步即可完成高质量生成的高效UNet网络[^3]。 为了更好地理解这一流程,下面给出一段简化版的知识蒸馏伪代码用于说明如何构建一个低步数的有效模型: ```python def distill_model(teacher, student_steps=8): teacher.eval() # 设置教师模型为评估模式 distilled_unet = UNet(student_steps).train() optimizer = torch.optim.Adam(distilled_unet.parameters()) for epoch in range(num_epochs): for batch_data in dataloader: with torch.no_grad(): target_output = teacher(batch_data) output = distilled_unet(batch_data) loss = criterion(output, target_output) optimizer.zero_grad() loss.backward() optimizer.step() return distilled_unet ``` 此段代码展示了如何利用预训练好的高精度模型指导新模型的学习过程,从而使得后者能够在较少的时间内达到相近的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值