大家好,我是程序员晓晓
我们在使用AI绘画Stable Diffusion的时候,文生图比较好理解,就是输入文字生成图片。
那图生图又是啥?
SD 允许我们上传一张图片作为底图,这张底图又称为“引导图”,然后再搭配提示词生成一张新的图片。
引导图主要影响最终要生成图片的颜色和构图,而提示词和文生图的提示词一样,这里就不过多讲述了。
图生图的界面入口在 img2img
。
这个界面下方也有一个 img2img
标签页,这个标签页就是用来上传引导图的。
我们上传一张引导图,但什么提示词都不写,然后让 SD 根据引导图重新生成一张图片。
此时,SD 会根据引导图的颜色、构图重新生成一张新的图,可以看到右边的图的女孩样子不一样了,衣服也换了一件,背景也从晚上变成下午。但整体的构图和色调还是和原图比较接近的。
而当我在正向提示词里输入蓝色头发(blue hair),SD 就会根据原图的颜色和构图重新生成一张图片,并且主角的头发变成了蓝色。
其他配置项
页面继续往下拉可以看到其他配置项。
Resize mode
项提供了不同的缩放模式:
-
•
Just resize
:仅调整大小。当生成图和原图宽高不一致时,生成的图片内容会被拉伸变形。 -
•
Crop and resize
:裁剪后缩放。当生成图和原图宽高不一致时,生成图片会被裁剪掉多出来的部分。 -
•
Resize and fill
:缩放后填充空白。当生成图和原图宽高不一致时,生成的图片会以长边为基准,短边方向多出来的空白位置用色块来填补。 -
•
Just resize (latent upscale)
:调整大小(潜空间放大)。当生成图和原图宽高不一致时,生成的图片内容也会被拉伸变形。而且会出现一些模糊的色块。特点是生成速度快,但出图效果很一般,不建议使用。
当设置了生成图的宽高和原图的宽高不一致时,可以选择这几种缩放的方式对图片进行调整。但最好的方式还是将生成的图片的宽高设置为原图的宽高。如果原图的宽高都很大,至少也要保证生成图的宽高和原图的宽高比例是一致的。
如果想更方便的将生成图的缩放成原图的n倍,可以在 Resize by
里调整。
再往下就是采样方法(Sampling method)和迭代步数(Sampling steps),还有设置图片的宽高等,这里的配置和文生图是一样的,就不过多讲解了。
需要关注的是 Denoising strength
,这项的意思是“重绘幅度”,数值越大,生成的图就和原图的差别越大。默认值 0.75
其实是一个比较大的值了。
如果不想大幅度修改原图,可将该值设置在 0.5
以下。
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
