论文笔记Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction∗

对于交通管理,公众安全,人流量预测是至关重要的。人流量预测是非常具有挑战的一个任务,受许多复杂因素的影响,例如区域间的流量,事件和天气。我们提出一个深度学习的方法,叫做ST-ResNet, 预测在一个城市中的每个区域人流的流入量和流出量。我们基于时空数据的的特性设计了一个端到端的结构,ST-ResNet。详细来说,我们利用残差网络建模拥挤交通的时间邻近性,周期性,趋势性。对于上述的每一个属性,我们都设计了一个残差卷积单元。ST-ResNet聚集三个单元的输出,并且对不同的单元赋予不同的权重。聚集后的输出将会和一些额外的因素(例如天气、日期)进行合并,然后预测每个区域的最终人流量。在北京和纽约两个城市的两种类型的数据集上进行了实验,实验结果证明ST-ResNet优于6个已知的方法。
介绍
对于交通管理,公众安全,人流量预测是至关重要的。例如,在2015新年的上海,大量的人群涌入一个区域,导致踩踏事故,36人死亡。在2016年的7月中旬,成百上千的“口袋妖怪围棋”玩家冲过纽约市中央公园,希望捉住一个特别稀有的数字怪兽,导致危险的踩踏事件。如果可以预测某个地区的人群流量,可以通过利用紧急机制(例如提前进行交通控制,发出警告或疏散人员)来缓解或预防此类悲剧。
在这篇文章中,我们预测两种类型的流量,流入流和流出流。被展现在下图(a)中:
在这里插入图片描述
流入流是指在一个时间间隔内进入一个区域的总流量,流出流是指在一个时间间隔内离开我们所要探测区域的流量。了解一个指定区域的上述两种流量是至关重要,这有益于风险控制和交通管理。可以通过行人数量,在附近道路上行驶的汽车数量,乘坐公共交通系统(例如地铁,公交车)的人数来计算一个区域的人流量。如果上述数据都可以获得,可以联合多种方法来预测人流量。在上图(b)中,我们可以通过手机信号来估计行人数量,从图中可以看出,对于r2区域,流入流是3,流出流是1.相似的,对于使用车的GPS信号,两种类型的流量分别是(0,3)。
同时预测一个指定区域的流入流和流出流是一个具有挑战性的任务,主要被影响通过下面是哪个复杂的因素:

  1. 空间依赖:在图1(a)中,r2区域的流入量受邻近区域的流出量(r1)以及较远地区的影响。类似,r2区域的流出量影响其他地区的流入量(r3)。
  2. 时间依赖:一个区域的流入量受邻近时间间隔的影响。例如,在8点的交通拥堵将会影响9点的人流量。在工作日的情况下,每天的早高峰时间是一样的没4小时循环一次。除此之外,随着冬天的来临,早高峰的时间可能越来越晚。
  3. 额外因素的影响:一些额外的因素,例如天气情况和一些突发事件可能改变一个地区的人流量。
    为了处理上述挑战,我们提出一个ST-ResNet网络(深度时间空间残差网络)。我们的贡献主要在以下四个方面:

ST-ResNet使用基于卷积的残差网络对城市中任何两个区域之间的附近和远处的空间依赖性进行建模,同时确保神经网络的深层结构不包含该模型的预测准确性
利用基于卷积的残差网络,建模一个城市中较近的两个区域之间的依赖和较远的两个区域之间的依赖,这确保了模型的准确度不受深度神经网络结构的影响。
对于人流量的时间属性,有以下三类:时间依赖性,周期性,趋势性。ST-ResNet使用三个网络建模这三种性质。
ST-ResNet聚集三个上述网络的输出,并且根据不同的分支和区域对它们赋予不同的权重。聚集后的输出和一些额外的因素联合。
我们使用北京出租车的轨迹和气象数据以及纽约市自行车轨迹数据来评估我们的方法。 结果表明,与6条基准线相比,我们的方法具有优势
Preliminaries
人流量问题的形式化定义
定义一:根据不同的粒度和语义含义,有许多位置定义。 在本研究中,我们将城市划分为基于经度和纬度的IJ网格图,其中一个网格表示一个区域,如图2(a)所示
在这里插入图片描述
定义二:(流入流和流出流)。P表示时间区间t的轨迹集合。对于一个网格(i,j),在时间间隔t内的流入流和流出流的计算公式如下所示:
在这里插入图片描述
其中,Tr:g1,g2,…,g|Tr|是P中的一条轨迹,gK是空间坐标,gk∈(i,j)表示gk在网格(i,j)中。| |表示集合的基数。
在时间间隔t中,在所有的I
J区域的流入流和流出流可以表示为一个张量:
在这里插入图片描述
在这里插入图片描述
进入流矩阵展示在上图(b)中。
形式化地。对于每个网格,有两种类型的流量,任何时间的交通流量都能表示成上述张量的形式。
问题一:依据历史的观测,{Xt|t=0,…,n-1},预测Xn
深度残差学习
深度残差学习允许神经网络有超过100层的深度。深度残差学习在多个识别任务上达到了较好的结果。例如图片分类,目标探测。
形式化地,一个拥有等同映射的残差单元定义如下:
在这里插入图片描述
X(l),X(l+1)是第l个残差单元的输入和输出,F是残差函数,残差学习的关键是学习残差函数F
Deep Spatio-Temporal Residual Networks
在这里插入图片描述
上图展示了论文模型的架构,主要由四部分组成。它们主要为了建模时间邻近性,周期性,趋势性,额外因素的影响。
在上图的右上部分,我们首先转换在每个时间间隔内一个城市的流入流和流出流为两通道的矩阵,使用定义一和定义二的方法。然后,我们划分时间轴为三个部分,最近时间,邻近时间,较远的时间。2通道的矩阵被输入三个网络中来建模三个时间特性:时间邻近性,周期性和趋势性。这三个部分共享相同的网络结构(卷积网络+残差网络)。这样的网络结构可以建模较近区域和较远区域的空间依赖。在最左侧的一部分,我们从额外的数据集中提取出额外的特征,例如天气情况和突发事件,然后把这些额外的特征输入两层的全连接神经网络。右边三部分的输出被融合为XRes.右侧网络的输出为XExt。最后,两部分通过一个Tanh函数进行聚集,映射为[-1,1]之内的数值。
卷积残差网络的架构
在这里插入图片描述
三部分的卷积残差网络共享相同的架构,网络架构图如上所示。
卷积
对于一个城市,通常包含较大的面积。邻近区域的流量相互影响,可以利用卷积网络捕捉较近的空间依赖。但是,由于地铁和高速公路的连接,较远的两个地方的人流量也可能相互影响。为了捕捉任何两个区域的空间依赖性,论文设计一个CNN结构,它具有多层。但是,由于卷积的影响,每一层的输出都会比输入减少。这导致不能构进行多次卷积。在以前的做法中,使用下采样来处理这个问题。在本文中,我们仅仅使用卷积,为了保持输入和输出的一致性,我们允许卷积核移动到图片之外。 在上图(a)中,我们可以发现,在高水平的一个节点依赖于中水平的9个节点,中水平的节点依赖于低水平的所有输入节点。这显示了多层卷积网络可以捕捉空间上较远距离的依赖。
对于捕捉时间邻近性的网络部分,输入是:
在这里插入图片描述
然后按照时间轴进行连接:
在这里插入图片描述
然后进行卷积:
在这里插入图片描述
残差单元
众所周知,非常深的网络不易于训练。为了解决这个问题,我们引入残差单元。
在图三(a)中,我们在Conv1上堆叠L层的残差单元;残差单元的结构如下:
在这里插入图片描述
F是残差函数,是ReLU + Convolution的联合。
在L层残差单元的顶端,加入一个卷积层(Conv2)。对于建模时间邻近性的网络的输出是Xc(L+2)。
与上述建模时间邻近性的操作相同,我们建模时间的周期性和趋势性。对于时间的周期性,网络的输入是:
在这里插入图片描述
lp是时间间隔,p是周期,输出是Xp(L+2)
对于时间的趋势性,输入是:
在这里插入图片描述
lq是时间间隔,q是周期性的跨度,输出是Xq(L+2)
融合:
对于上述三个网络的输出,我们对它们赋予不同的权重进行融合。
在这里插入图片描述
然后,我们融合额外特征的部分:
在这里插入图片描述
最后,损失函数公式如下所示:
在这里插入图片描述
在这里插入图片描述

  • 9
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 10
    评论
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值