Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting 论文笔记

这篇博客介绍了Spatio-Temporal Graph Convolutional Networks(STGCN)在交通预测中的应用。通过深度学习模型,STGCN有效地捕捉了交通数据的时空关联,优于传统方法。文章详细解读了论文摘要,定义了图上交通预测问题,并概述了STGCN的网络结构,包括时间门控卷积和图卷积层。模型通过门控时间卷积提取时间特征,利用GCN提取空间特征,最终通过全连接层输出预测结果。
摘要由CSDN通过智能技术生成

Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting 论文笔记-----GCN在交通领域的应用(二)

一、论文翻译:

1、摘要

       及时准确地交通预测对于城市交通控制和指导具有至关重要的意义。由于交通流量的非线性和复杂性,传统的方法不能满足中长期预测任务的需求,并且往往会忽略时空数据的时间和空间依赖特性。在这篇论文中,为了处理在交通领域的时间序列预测问题,我们提出一种新颖的深度学习框架,时间空间图卷积网络(STGCN)。不同于引用常规的卷积和循环单元,我们在图上建模预测问题,并且用完整的卷积结构来建模模型。这样的模型有更快的训练速度更少的参数。实验显示我们的模型通过对多尺度交通网络进行建模,有效地捕捉了综合时空关联,并在各种实际交通数据集上始终优于最先进的基线。

2. 定义

2.1 图上的交通预测的定义

交通预测是一个经典的时间序列预测问题。根据先前的M个时间步的交通观测量,预测接下来H个时间步的交通观测量(速度或者流量)。公式如下所示:

在上述公式中,vtRn表示n个路段在时间步t的观测向量,向量中的每个元素表示一个路段在一个时间点的交通观测值。在这篇论文中,在图上定义一个交通网络并且集中于结构化的交通时间序列。观测向量vt不是独立的,而是通过图中的成对连接连接起来的。因此,在下图中,数据点vt是在无向图G上的一个图信号,图的权重表示为wij。在第t个时间步,图Gt=(Vt,E,W), Vt表示顶点的集合,表示交通网络中n个监测站点在时刻t的监测值,E是边的集合,表示站点之间的连接情况,W表示图G的权重邻接矩阵。

### MATLAB 实现时空图卷积网络用于交通流量预测 为了实现《Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting》中的方法,需要构建一个能够处理时空数据的框架。该框架主要由以下几个部分组成: #### 1. 数据预处理 在开始之前,需准备并清理交通流量数据集。这通常涉及缺失值填充、标准化以及创建邻接矩阵。 ```matlab % 假设 data 是 N x T 的矩阵, 其中 N 表示节点数, T 表示时间步长. data = load('traffic_data.mat'); % 加载交通流量数据 adj_matrix = create_adjacency_matrix(data); % 创建邻接矩阵函数 normalized_data = normalize_traffic_data(data); % 归一化交通流量数据 ``` #### 2. 构建图结构 通过定义道路之间的连接关系来建立图结构。这里使用邻接矩阵表示图的关系。 ```matlab function adj_matrix = create_adjacency_matrix(road_network) % road_network 应包含路段间距离或其他衡量标准的信息 distances = calculate_distances_between_roads(road_network); threshold = determine_threshold(distances); % 设定阈值 [N, ~] = size(distances); adj_matrix = zeros(N); for i = 1:N for j = 1:N if distances(i,j) <= threshold && i ~= j adj_matrix(i,j) = exp(-distances(i,j)^2 / (2*threshold^2)); end end end end ``` #### 3. 定义 ST-GCN 层 ST-GCN 结合了空间上的 GCN 和时间维度上的 CNN 来捕捉复杂的时空模式[^3]. ```matlab classdef STGCNLayer < nnet.layer.Layer properties K; % 支持的最大阶数 F_in; F_out; W; b; end methods function layer = STGCNLayer(K,F_in,F_out) layer.K = K; layer.F_in = F_in; layer.F_out = F_out; szW = [F_out,K+1,F_in]; layer.W = randn(szW)*0.01; layer.b = zeros(F_out,1); end function Z = predict(layer,X,A_hat) % X: 输入特征向量 (B,N,T,F_in), B 批次大小, N 节点数量, T 时间长度, F_in 特征维数 % A_hat: 预处理后的拉普拉斯矩阵 B = size(X,1); N = size(A_hat,1); T = size(X,3); H = cell(T,1); for t=1:T Xt = reshape(X(:,:,t,:),[],size(X,4)); % 将三维张量转换成二维矩阵 HT = []; for k=0:min(layer.K,size(A_hat,1)-1) AkX = power(A_hat,k)*Xt; HT = cat(2,HT,AkX); end H{t} = tanh(reshape(linear_combination(HT,layer.W)+repmat(layer.b',size(B*N,1),1),... [B,N,layer.F_out])); end Z = cat(3,H{:}); end function dLdW = backward(layer,dLdZ,X,A_hat) ... end end end ``` #### 4. 训练模型 设置超参数,并利用反向传播算法调整权重以最小化损失函数。 ```matlab num_epochs = 50; batch_size = 64; layers = [ imageInputLayer([input_height input_width channels]) convolution2dLayer(filterSize,numFilters,'Padding','same') batchNormalizationLayer() reluLayer() fullyConnectedLayer(outputSize) regressionLayer()]; options = trainingOptions('adam',... 'MaxEpochs', num_epochs,... 'MiniBatchSize', batch_size,... 'InitialLearnRate', 0.001,... 'Shuffle', 'every-epoch',... 'Verbose', false,... 'Plots', 'training-progress'); model = trainNetwork(trainingData,layers,options); ``` 请注意上述代码片段仅为概念验证性质,在实际应用时还需要考虑更多细节优化及调试工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值