Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting 论文笔记

这篇博客介绍了Spatio-Temporal Graph Convolutional Networks(STGCN)在交通预测中的应用。通过深度学习模型,STGCN有效地捕捉了交通数据的时空关联,优于传统方法。文章详细解读了论文摘要,定义了图上交通预测问题,并概述了STGCN的网络结构,包括时间门控卷积和图卷积层。模型通过门控时间卷积提取时间特征,利用GCN提取空间特征,最终通过全连接层输出预测结果。
摘要由CSDN通过智能技术生成

Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting 论文笔记-----GCN在交通领域的应用(二)

一、论文翻译:

1、摘要

       及时准确地交通预测对于城市交通控制和指导具有至关重要的意义。由于交通流量的非线性和复杂性,传统的方法不能满足中长期预测任务的需求,并且往往会忽略时空数据的时间和空间依赖特性。在这篇论文中,为了处理在交通领域的时间序列预测问题,我们提出一种新颖的深度学习框架,时间空间图卷积网络(STGCN)。不同于引用常规的卷积和循环单元,我们在图上建模预测问题,并且用完整的卷积结构来建模模型。这样的模型有更快的训练速度更少的参数。实验显示我们的模型通过对多尺度交通网络进行建模,有效地捕捉了综合时空关联,并在各种实际交通数据集上始终优于最先进的基线。

2. 定义

2.1 图上的交通预测的定义

交通预测是一个经典的时间序列预测问题。根据先前的M个时间步的交通观测量,预测接下来H个时间步的交通观测量(速度或者流量)。公式如下所示:

在上述公式中,vtRn表示n个路段在时间步t的观测向量,向量中的每个元素表示一个路段在一个时间点的交通观测值。在这篇论文中,在图上定义一个交通网络并且集中于结构化的交通时间序列。观测向量vt不是独立的,而是通过图中的成对连接连接起来的。因此,在下图中,数据点vt是在无向图G上的一个图信号,图的权重表示为wij。在第t个时间步,图Gt=(Vt,E,W), Vt表示顶点的集合,表示交通网络中n个监测站点在时刻t的监测值,E是边的集合,表示站点之间的连接情况,W表示图G的权重邻接矩阵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值