Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting 论文笔记-----GCN在交通领域的应用(二)
一、论文翻译:
1、摘要:
及时准确地交通预测对于城市交通控制和指导具有至关重要的意义。由于交通流量的非线性和复杂性,传统的方法不能满足中长期预测任务的需求,并且往往会忽略时空数据的时间和空间依赖特性。在这篇论文中,为了处理在交通领域的时间序列预测问题,我们提出一种新颖的深度学习框架,时间空间图卷积网络(STGCN)。不同于引用常规的卷积和循环单元,我们在图上建模预测问题,并且用完整的卷积结构来建模模型。这样的模型有更快的训练速度更少的参数。实验显示我们的模型通过对多尺度交通网络进行建模,有效地捕捉了综合时空关联,并在各种实际交通数据集上始终优于最先进的基线。
2. 定义
2.1 图上的交通预测的定义
交通预测是一个经典的时间序列预测问题。根据先前的M个时间步的交通观测量,预测接下来H个时间步的交通观测量(速度或者流量)。公式如下所示:
在上述公式中,vt∈Rn表示n个路段在时间步t的观测向量,向量中的每个元素表示一个路段在一个时间点的交通观测值。在这篇论文中,在图上定义一个交通网络并且集中于结构化的交通时间序列。观测向量vt不是独立的,而是通过图中的成对连接连接起来的。因此,在下图中,数据点vt是在无向图G上的一个图信号,图的权重表示为wij。在第t个时间步,图Gt=(Vt,E,W), Vt表示顶点的集合,表示交通网络中n个监测站点在时刻t的监测值,E是边的集合,表示站点之间的连接情况,W表示图G的权重邻接矩阵。