用GBDT构造组合特征的原理
【1】 首先,用GBDT对原始训练数据做训练,得到一个二分类器,利用网格搜索寻找最佳参数组合。
【2】GBDT训练好做预测的时候,把模型中的每棵树计算得到的/预测概率值所属的叶子结点位置记为1,这样,就针对每个样本行/构造出了新的训练数据。
【3】新的训练数据构造完后,与原始训练数据中的label(输出)数据一并输入到Logistic Regression分类器中进行最终分类器的训练。
注释:(1)在一个具有n个弱分类器、共计m个叶子结点的GBDT中,每一条训练数据都会被转换为1*m维稀疏向量,且有n个元素为1,其余m-n 个元素全为0。(2)利用GBDT,将原始数据提取为新的数据,数据不仅变得稀疏,而且由于弱分类器个数,叶子结点个数的影响,可能会导致新的训练数据特征维度过大的问题,因此,在Logistic Regression这一层中,可使用正则化来减少过拟合的风险,在Facebook的论文中采用的是L1正则化。(3)RF也是多棵树,但从效果上有实践证明不如GBDT。GBDT前面的树,特征分裂主要体现对多数样本有区分度的特征;后面的树,主要体现的是经过前N颗树,残差仍然较大的少数样本。优先选用在整体上有区分度的特征,再选用针对少数样本有区分度的特征,思路更加合理。
代码实现
import numpy as np
from sklearn.preprocessing import OneHotEncoder
from sklearn.ensemble import GradientBoostingClassifier
import pandas as pd
titanic=pd.read_csv('http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt')
X_train=titanic[['pclass','age','sex']]
Y_train=titanic['survived']
X_train['age'].fillna(X_train['age'].mean(),inplace=True)
print(X_train.shape,Y_train.shape)
from sklearn.feature_extraction import DictVectorizer #特征转换器:将类别型特征独热编码
vec=DictVectorizer(sparse=False)
X_train=vec.fit_transform(pd.DataFrame(X_train).to_dict(orient='record'))
gbm1 = GradientBoostingClassifier(n_estimators=2, random_state=10, subsample=0.6, max_depth=2, min_samples_split=20)
gbm1.fit(X_train, Y_train)
train_new_feature = gbm1.apply(X_train) #返回训练数据X_train在训练好的模型里每棵树中所处的叶子节点的位置(index)
print(train_new_feature)
train_new_feature = train_new_feature.reshape(-1, 2)
enc = OneHotEncoder()
enc.fit(train_new_feature)
train_new_feature2 = np.array(enc.transform(train_new_feature).toarray())
#做One-hot的方法:OneHotEncoder(),首先fit()过待转换的数据后,再次transform()待转换的数据,就可实现对所有特征的One-hot编码。
#transform()后的数据格式不能直接使用,最后需要使用.toarray()将其转换成数组结构。
print(train_new_feature2,train_new_feature2.shape)
#Output:
# (1313, 6) (1313,)
# [[[2.]
# [5.]]
#
# [[2.]
# [5.]]
#
# [[6.]
# [3.]]
#
# ...
#
# [[6.]
# [3.]]
#
# [[3.]
# [6.]]
#
# [[6.]
# [3.]]]
# [[1. 0. 0. ... 0. 1. 0.]
# [1. 0. 0. ... 0. 1. 0.]
# [0. 0. 0. ... 1. 0. 0.]
# ...
# [0. 0. 0. ... 1. 0. 0.]
# [0. 1. 0. ... 0. 0. 1.]
# [0. 0. 0. ... 1. 0. 0.]] (1313, 8)