剑指offer 07. 重建二叉树

剑指offer 07. 重建二叉树

题目描述

在这里插入图片描述

解题思路

细节:
在中序遍历中对根节点进行定位时,一种简单的方法是直接扫描整个中序遍历的结果并找出根节点,但这样做的时间复杂度较高。我们可以考虑使用哈希表来帮助我们快速地定位根节点。

对于哈希映射中的每个键值对,键表示一个元素(节点的值),值表示其在中序遍历中的出现位置。

在构造二叉树的过程之前,我们可以对中序遍历的列表进行一遍扫描,就可以构造出这个哈希映射。在此后构造二叉树的过程中,我们就只需要 O(1)的时间对根节点进行定位了。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    //记录inorder中每个num到下标idx的映射
    public Map<Integer, Integer> numToIdx = new HashMap<>();

    public TreeNode buildTree(int[] preorder, int[] inorder) {
        int n = preorder.length;
        if (n == 0) return null;
        
        for (int i = 0; i < n; i++) {
            numToIdx.put(inorder[i], i);  //初始化map
        }
        return buildTree(preorder, 0, n - 1, inorder, 0, n - 1);
    }
    //以preorder[preBegin...preEnd]和inorder[inBegin...inEnd]重建二叉树,返回这颗二叉树的根节点
    public TreeNode buildTree(int[] preorder, int preBegin, int preEnd,
                                int[] inorder, int inBegin, int inEnd) {
        //base case
        if (inEnd - inBegin < 0) return null;
        //中序数组中根节点的位置
        int midIdx = numToIdx.get(preorder[preBegin]);

        TreeNode root = new TreeNode(inorder[midIdx]);
        //左子树长度
        int leftLength = midIdx - inBegin;
        root.left = buildTree(preorder, preBegin + 1, preBegin + leftLength, inorder, inBegin, midIdx - 1);
        root.right = buildTree(preorder, preBegin + leftLength + 1, preEnd, inorder, midIdx + 1, inEnd);
        return root;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值