《线性代数应该这样学》学习笔记
参考书目:Axler的《Linear Algebra Done Right》
参考视频:https://www.bilibili.com/video/BV1PK4y1x7rC
第1章 向量空间
1.1复数
F:域(field),至少包含0和1的集合,并有加法和乘法,且满足交换性、结合性、单位元、加法逆、乘法逆、分配性质
1.2向量空间的定义
组:设n为非负整数,长度为n的组是n个有序的元素。长度一定是有限的,可以为0,元素可以是数,也可以是组
组相等:元素且相对位置都相同
F^n是 F中元素 组成的 长度为n的 组的集合
向量空间的定义:带有加法和标量乘法的集合V,使得下列性质成立:交换性、结合性、单位元、加法逆、乘法逆、分配性质
向量空间中的元素成为向量或点
两个特殊的向量空间
截图来自https://www.bilibili.com/video/BV1PK4y1x7rC