线性代数应该这样学读后感

开始

线代考试大概是9初,之前学的云里雾里,最近我又重新看了一遍,总结了我学了以后有关的想法,希望能和大家探讨。
虽然前面很罗嗦,但是全部看下来,整本书的思路很清晰,就是寻找能够让算子的矩阵简单表示的基。
需要注意的一些点:

  1. 讨论的是复空间上的(说实话,实化这部分我没看明白,还得好好理解)。
  2. 算子:就是从 V V V映射到 V V V的线性映射,简单来说就是值域定义域相同
  3. T ∣ U T|_U TU的意思是以 U U U为定义域的映射 T T T。因为很多时候定理是否成立和定义域以及映射本身都有关,于是用这个记号。

第一个矩阵是上三角阵。

所有复空间的算子都能找到一组基,使其有上三角表示。
这里的证明方法很巧妙,构造了一个空间 U = r a n g e ( T − λ I ) U=range(T-\lambda I) U=range(TλI)先证明这个空间成立,再证明由这个空间张成的基也成立。
构造的方法是找到 U U U的基,然后一个一个扩张为 V V V的基。
由于施密特法正交化,使得产生的规范正交基张成的空间和原来向量张成空间一样,所以复空间上算子可以更好的表示为一组规范正交基和上三角阵,这就是著名的舒尔定理。

第二个矩阵是对角阵。

条件是复空间的正规算子(复谱定理),实空间的自伴算子才有(实谱定理)。
原因是正规算子有 ∣ ∣ T u ∣ ∣ = ∣ ∣ u ∣ ∣ ||Tu||=||u|| Tu=u,然后根据伴随的矩阵是共轭转置,可以发现上三角转置以后下面变成了 0 0 0,两个一对应就知道只有主对角元不是 0 0 0
对角阵对应的基是本征向量,由于可以用施密特法规范化,所以也可以写成规范正交基。
可以说,这个方法除了要求比较严格以外,向量和矩阵都很容易求。

第三个矩阵是方块对角阵

由于对角阵要求太高,于是退而求其次,找到了一个对角元素都是上三角矩阵,其他元素都是 0 0 0的矩阵。
称为广义本征向量,每个小矩阵就是广义本征空间。
具体算的方法是 ( T − λ k I ) dim ⁡ V v = 0 (T-\lambda_kI)^{\dim V}v=0 (TλkI)dimVv=0可以求出本征值对应的基,每个本征值对应的基可以写成一个小矩阵,矩阵的秩就是本征值的重数,对角线的元素也就是本征值,对角线以上元素需要自己算。

第四个矩阵是若尔当形(有的地方叫约当标准型)

发现幂零算子的矩阵可以化简为主对角线上部分是 1 1 1,其他部分都是 0 0 0的矩阵,而广义本征空间上 ( T − λ j I ) ∣ G ( λ j , T ) (T-\lambda_j I)|_{G(\lambda_j,T)} (TλjI)G(λj,T)是幂零的(广义本征向量的定义就是使 T − λ i I T-\lambda_i I TλiI的某个次幂映射后为 0 0 0的向量,因此广义本征空间可以使 T − λ I T-\lambda I TλI是幂零映射),每个小矩阵可以写为小的若尔当形,最后组合成大的若尔当形。

总结

书中其他的内容感觉就是为上面这四步做理论基础。书上很多证明还是很巧妙的,就是不知道考试怎么考。

我总结了书上的一些定理什么的,可惜由于是截图用markdown写的,所以传上来图片都没了,如果想看看的朋友可以私信我。

最后祝大家门门满绩!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值