Trading off Between User Coverage and NetworkRobustness for Edge Server Placement边缘计算中的权衡策略

背景介绍

由于移动设备的广泛使用,人们对计算性能的要求越来越高,云计算被广泛应用于提供计算性能。但是,由于不可预测的网络延迟和昂贵的数据速率,使用云计算往往会出现延迟的情况。此时,边缘计算应用于解决延迟问题,满足延迟敏感用户的需求。

边缘计算,指的是:采用边缘服务器,允许计算、网络和存储资源与移动和物联网设备用户(此处统称为移动用户)近距离放置,并减少其延迟。这些边缘服务器由一个或多个物理机器供电,与地理位置接近移动用户的基站或接入点连接。通常,一个边缘服务器覆盖特定的地理区域,以便其覆盖范围内的移动用户可以通过无线访问连接到它。相邻边缘服务器的覆盖区域通常相交,以避免出现任何基站未覆盖的空白区域。因此,边缘服务器以分布式的方式放置,以便它们可以覆盖不同的地理区域。位于交叠区域的移动用户可以连接到覆盖该移动用户的边缘服务器之一。这就是接近性约束。通过这种方式,移动用户可以由附近的边缘服务器服务,而不是由远程云服务器服务,从而确保其低延迟。简而言之,就是在靠近用户的位置放置服务器来确保低延迟。

因为每一个边缘服务器都有其覆盖区域,在区域内的用户可以连接到对应的边缘服务器上,所以,我们使用用户覆盖率来表示边缘服务器对用户的覆盖程度。

然而,由于各种原因,边缘服务器可能产生故障。如果服务器出现故障,那么其覆盖范围内的移动用户就只能被迫连接远程云服务器而不能连接到边缘服务器。除非该用户在多个边缘服务器的覆盖区域的交集当中,那么它可以重新连接到另一个边缘服务器上,确保低延迟。我们姑且将边缘服务器的稳定性称作网络鲁棒性。

并且,如果为追求网络鲁棒性而大量放置重叠的边缘服务器,那么很可能导致用户覆盖率降低;而为追求用户覆盖率而实现最大覆盖,很可能会使得服务器之覆盖区域间没有交集,网络鲁棒性降低。理想状况下在每一个基站上都放置一个边缘服务器可以同时实现网络鲁棒性和用户覆盖率的最大化。但是这样做的后果是高昂的成本。

因此,我们需要考虑的问题是:在放置k个边缘服务器(Edge Server Placement)的前提下,同时实现最大程度的Coverage和Robustness的权衡策略,即kESP-CR。

本篇论文的主要贡献在以下三点:

1.将kESP-CR问题建模为一个约束优化问题,并且证明找到这个问题的最优解在计算上是NP难的。

2.提出两种计算kESP-CR问题的方法。一种ESP-O:是基于整数规划的寻找小规模ESP问题的最优解;另一种是ESP-A:用于寻找大规模ESP问题的次优解。

3.使用广泛真实数据集对两种方法进行实验评估。

建模

Problem Formulation

给定n个基站B = {b1,b2,......,bn},k个边缘服务器S={s1,s2,......,sk}以及m个移动用户U={u1,u2,......um},通过设计放置策略使得用户覆盖率和网络鲁棒性达到折中最大化。

Coverage and Robustness Model

当一个移动用户uj处于一个基站bi的覆盖范围内时,它才能连接到该基站上,这时我们将这个基站bi称为uj的邻居基站(neighbour basestation),uj的邻居基站集合定义为N(ui)。

Definition 1 (Accessibility Matrix)

要想计算出用户覆盖率,我们需要知道基站与用户之间的连接性。为了体现出每一个移动用户与每一个基站之间的可访问性(accessibility),我们可以设计出可访问性矩阵。

a(uj,bi)∈(0,1)定义为:当bi位于uj的邻居集合中时a(uj,bi) = 1,表示uj与bi之间的连接性。

基于定义1,我们可以给出指向用户覆盖率的定义2。

Definition 2 (User Coverage)

给定一个基站bi,bi的用户覆盖率定义为bi能连接到的用户数量,即集合c中的元素数量,定义c(bi) = {uj|a(uj,bi) = 1 for uj∈U}。 为能定量计算,取集合内元素个数。

对于一组基站bi,bj来说,它们之间的网络鲁棒性表示为bi&bj共同覆盖的用户数量。

Definition 3 (Network Robustness)

其中,bi≠bj。为了避免在同一个基站上部署多个边缘服务器的情况的出现,我们定义\delta (bi,bi) = 0。网络鲁棒性矩阵定义为如下所示:

Coverage and Robustness Evaluation

Definition 4 (Placement Decision)

对应基站集合B定义一个集合p,如果pi = 1表示bi处放置了边缘服务器;pi = 0表示bi处没有放置边缘服务器。p就表示放置策略。

为了精确地定量评估一个策略p下的用户覆盖率以及网络鲁棒性,我们需要继续建模,从定量的角度。

Definition 5 (kESP-CR Strategy)

集合p表示一个kESP-CR策略。

一个p的Coverage:

即放置了边缘服务器的基站的覆盖度之和。

一个p的Robustness:

遍历每一对基站,若一对基站均放置边缘服务器,鲁棒性之和相加。

Definition 6 (Coverage and Robustness)

在一个p下,覆盖度和鲁棒性的折中量(The coverage and robustness compromise programming (CR-CP))可以定义为:

其中的p*是理论上最差的策略,即理论上具有最小网络鲁棒性和最小用户覆盖度的的策略。

由此,kESP-CR的目标就是使CR(p)最大化。

证明NP难

通常的证明一个问题是NP难的方法是证明它可以由一个已知的NP难问题约化得到。

什么是问题约化?问题A(简单)可以约化为问题B(复杂),就好比一个一元一次方程也可以当作一个特殊的,二次项为0的一元二次方程,并且可以使用一元二次方程的解法来解决。如果A能够约化为B,并且B有解法,那么A也一定可以用这个解法解决。

在当前这个场景中,引入KHS问题:

给出一个无向图G=(V,E),u,v表示子图G'当中的两个顶点,\omega(u,v)是权重函数,表示u,v之间的边数×权重,对所有顶点数为k的子图求和。

对一个含有四个参数的kHS问题(V,E,ω,k),可以构建起一个kESP-CP问题,使kHS问题中的每个量都能找到对应:

V->B

E->\delta(bi,bi')

ω->min{c(bi),1}

k->k

由此我们可以证明kHS问题可以约化为kESP-CR问题,从而证明了kESP-CR问题是一个NP难问题。

ESP-O算法

kESP-CR问题可以建模为一个约束优化问题,决策变量为放置策略p(一个集合,每个元素取0或者1),在约束条件p的元素之和等于k下,最大化CR(p)。

可以使用整数规划求解器来得到这个问题的最优解。但是由于整数规划求解器的计算时间复杂度较高,因此只能局限于小规模数据范围内求解。

ESP-A算法

在大规模数据范围上,设计出一个迭代算法来尽可能找到最优解。

这个算法的时间复杂度为O(n²logn)。对于每一个基站bi来说,最坏的情况是有n-1个邻居基站,找到每一个基站的最佳策略的复杂度是O(nlogn),整体的复杂度就是O(n²logn)。

实验评估

实验整体可以分为两组。一组是小规模数据集上使用ESP-O,ESP-A,ESP-S(随机选择),ESP

-C(只考虑Coverage),ESP-R(只考虑Robustness);另一组是大规模数据集上使用除ESP-O外的四种策略。

实验数据显示在小规模和大规模数据范围上,ESP-A均比三种经典做法表现出显著优势,并且ESP-O算法随数据集的增大耗时快速增加,不适用于大规模数据的计算。因此可以得到ESP-A在解决大规模kESP-CR问题上有显著优势。

科研过程

首先是发现问题。背景是需要依赖边缘计算来确保低延迟,需要兼顾网络鲁棒性和用户覆盖率。但是在有限的预算下,存在同时实现最大化网络鲁棒性和用户覆盖率的矛盾,即需要设计策略和算法来计算出合适的折中策略。

接着是建模。问题中的常量是基站和用户的数量、位置以及边缘服务器的数量,变量是边缘服务器的放置选择。而服务器和用户之间的二元对应关系实质上就是一个二维数组,由此使用矩阵来搭建模型。

为了搭建用户覆盖率和网络鲁棒性的模型,以用户与基站之间的连接性为基础,设计出可访问性矩阵和鲁棒性矩阵的概念。

然后,搭建在特定策略下总用户覆盖率和总网络鲁棒性的模型,并且给出折中量。kESP-CR问题就变成了一个优化问题,优化目标就是CR(p),使其最大化。

根据kESP-CR约束优化且决策变量为整数的特点,得到小规模数据下使用整数规划求解器取最优解。但是由于整数规划求解器的复杂度较高,在大规模数据下设计出了ESP-A算法来得到一个次优解。ESP-A算法是一个迭代算法,核心在于取邻居基站的过程本身就相当于一次筛选,避免了暴力死解。

核心在于建模,将问题和其中的变量抽象成数学模型。

边缘计算的特点

边缘计算的优点在于:由于边缘服务器在物理距离上离用户更近,因此,能够确保移动用户的低延迟。

但是,它也存在一些问题:比如说本文中提到的用户覆盖率和网络鲁棒性,还有建立服务器本身需要一定的成本,建立服务器前必须要考虑长期利益。

边缘计算主要有两大类问题:

(1)放置边缘服务器提升用户体验

(2)优化边缘服务器的放置来提升其性能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值