最短路径算法-广度优先搜索

考虑如下图:
这里写图片描述

当路径没有权重时,从v1到v7的最短路径代码如下:

#include<iostream>

using namespace std;

int main()
{
        int input[8][8] = {
        {0,0,0,0,0,0,0,0},
        {0,0,1,0,1,0,0,0},
        {0,0,0,0,1,1,0,0},
        {0,1,0,0,0,0,1,0},
        {0,0,0,1,0,1,1,1},
        {0,0,0,0,0,0,0,1},
        {0,0,0,0,0,0,0,0},
        {0,0,0,0,0,0,1,0}
        }; //这里简单起见用矩阵表示有向图,并且第一排和第一列元素并不使用
        int path[8] = {0,0,0,0,0,0,0,0}; //用于记录经过的节点,因为路径无权重,因此不需要重复处理同一个节点
        int i, j;
        for (i = 1; i < 8; i++)
        {
                for (j = 0; j < 8; j++)
                {
                        if (input[i][j] == 1)//如果存在一条路径,则更新目的节点在path中的值
                        {
                                if (path[j] == 0)
                                        path[j] = path[i] + 1;//因为无权重,所以这里对起始节点做+1即可
                        }
                }
        }
        cout << path[7] << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值