import tensorflow as tf
w = tf.Variable(tf.constant(5, dtype=tf.float32))
epoch = 40
LR_BASE = 0.2 # 最初学习率
LR_DECAY = 0.99 # 学习率衰减率
LR_STEP
学习率的动态优化
最新推荐文章于 2022-08-16 15:52:01 发布
本文探讨了在深度学习中优化学习率的重要性,并介绍了几种常用的动态调整学习率的方法,包括指数衰减、余弦退火和学习率warm up等策略。通过适当地调整学习率,可以提高模型的训练效果和收敛速度。
摘要由CSDN通过智能技术生成