常见激活函数的汇总

本文汇总了深度学习中常见的激活函数,包括tf.nn.sigmoid、tf.math.tanh、tf.nn.relu和tf.nn.leak_relu。sigmoid函数在多级级联时易导致梯度消失,而tanh函数在反向传播时计算相对较慢。relu函数可能出现神经元死亡问题,leak relu则作为relu的改进版。对于初学者,推荐使用relu激活函数,并配合合适的学习率和输入特征标准化。
摘要由CSDN通过智能技术生成

激活函数

tf.nn.sigmoid(x)

相当于对数据进行归一化,
但是在实际应用过程中,他的导数在0-0.25之间,并且他在多级级联的时候会造成梯度的消失,因此在实际应用过程中很少应用。
并且逆运算为指数,在反向传播过程中耗时
在这里插入图片描述

tf.math.tanh(x)

在这里插入图片描述

tf.nn.relu()

反向传播过程中会出现由于出现负数不能激活神经元,导致其“死亡”的情况。
在这里插入图片描述

tf.nn.leak_relu(x)

在这里插入图片描述
初学者的激活函数的选择建议:
1.首选relu激活函数
2.学习率设置较小的值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值