B - Pie(二分)

点击打开链接

My birthday is coming up and traditionally I'm serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This piece can be one whole pie though. 

My friends are very annoying and if one of them gets a bigger piece than the others, they start complaining. Therefore all of them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size. 

What is the largest possible piece size all of us can get? All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different. 
Input
One line with a positive integer: the number of test cases. Then for each test case:
---One line with two integers N and F with 1 <= N, F <= 10 000: the number of pies and the number of friends. 
---One line with N integers ri with 1 <= ri <= 10 000: the radii of the pies. 
Output
For each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V. The answer should be given as a floating point number with an absolute error of at most 10^(-3).
3 3
4 3 3
1 24
5
10 5
1 4 2 3 4 5 6 5 4 2
Sample Output
25.1327
3.1416
50.2655

题解:首先求得每个馅饼的面积(高的为1,就不加考虑了),要注意的是馅饼不能拼接,即不能把分剩下的分给他人,以第一组数据为例(圆周率为p1),半径分别为4,3,3,面积为16p1,9p1,9p1,以面积最大的为开始,首先有两个人分它,一个人分得8p1,即每个人均分8p1,分完饼后,人数为F+1(加上本人),为最佳答案。

圆周率可定义为#define p1 acos(-1.0)(若直接定义为#define p1 3.1415926,报错)。

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#define p1 acos(-1.0) 
using namespace std;
double a[10000+6];
int n,m;
bool solve(double q)
{
	int t=0;
	for(int i=1;i<=n;i++)
	{
		t=t+(int)(a[i]/q);
		if(t>=m)
		return true;
	}
	return false;
}

int main()
{
	int i;
	scanf("%d",&i);
	while(i--)
	{
		scanf("%d%d",&n,&m);
		m++;
		double l=0,r=0;
		int s,t; 
		for(s=1;s<=n;s++)
		{
			scanf("%lf",&a[s]);
			a[s]=a[s]*a[s]*p1;
			r=max(r,a[s]);
		}
		double mid;
		while(r-l>0.00001)
		{
			mid=(r+l)/2.0;
			if(solve(mid))
			{
				l=mid;
			}
			else
			{
				r=mid;
			}
		}
		printf("%.4lf\n",l);
	}
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值