Introduction to Graph Neural Network(图神经网络概论)翻译:Chapter2:Basic of Math and Graph

本文介绍了图神经网络(GNN)的基础知识,涵盖了线性代数中的基本概念,如向量、矩阵、特征分解和奇异值分解。接着,阐述了概率论的基础,包括随机变量、概率分布以及贝叶斯公式。最后,概述了图论的基本概念,如领接矩阵、度矩阵和拉普拉斯矩阵,为理解GNN打下基础。
摘要由CSDN通过智能技术生成

2 Basic of Math and Graph

2.1 Linear Algebra(线性代数)

线性代数的语言和概念已经在计算机科学的许多领域得到了广泛的应用,机器学习也不例外。对机器学习的良好理解是建立在对线性代数彻底理解的基础上的。在本节中,我们将简要回顾线性代数中的一些重要概念和计算方法,这些概念和计算方法对于理解本书的其他内容是必要的。在本节中,我们将复习线性代数中的一些基本概念和计算,这些概念和计算对于理解本书的其他内容是必要的。

2.1.1 Basic Concepts(基本概念)

  • 标量 一个数
  • 向量 一列有序数字,可以表示为以下形式

x = [ x 1 x 2 ⋮ x n ] (2-1) \mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right] \tag{2-1} x=x1x2xn(2-1)

向量的范数衡量其长度。 L p L_p Lp范数定义如下:

∥ x ∥ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p (2-2) \|\mathrm{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} \tag{2-2} xp=(i=1nxip)p1(2-2)

L 1 L_1 L1范数, L 2 L_2 L2范数和 L ∞ L_\infty L范数经常用于机器学习中。

L 1 L_1 L1范数可以简化为:

∥ x ∥ 1 = ∑ i = 1 n ∣ x i ∣ (2-3) \|\mathbf{x}\|_{1}=\sum_{i=1}^n\left|x_{i}\right| \tag{2-3} x1=i=1nxi(2-3)

在欧几里得空间 R n \mathbb{R}^{n} Rn中, L 2 L_2 L2范数用于测量向量的长度,其中:

∥ x ∥ 2 = ∑ i = 1 n x i 2 (2-4) \|\mathbf{x}\|_{2}=\sqrt{\sum_{i=1}^{n}\mathbf{x}_{i}^{2}} \tag{2-4} x2=i=1nxi2 (2-4)

L ∞ L_\infty L范数也被称之为最大穷范数:

∥ x ∥ ∞ = max ⁡ i ∣ x i ∣ (2-5) \|\mathrm{x}\|_{\infty}=\max _{i}\left|x_{i}\right| \tag{2-5} x=imaxxi(2-5)

L p L_p Lp范数的情况下,两个向量 x 1 \mathbf{x_1} x1 x 2 \mathbf{x_2} x2 的距离(其中 x 1 \mathbf{x_1} x1 x 2 \mathbf{x_2} x2 在同一线性空间中)可以定义为:

D p ( x 1 , x 2 ) = ∥ x 1 − x 2 ∥ p (2-6) \mathbf{D}_p\left(\mathbf{x_1,x_2}\right) = \|\mathbf{x_1-x_2}\|_{p} \tag{2-6} Dp(x1,x2)=x1x2p(2-6)

一组向量 x 1 , x 2 , … , x m \mathbf{x_1,x_2, \ldots , x_{m}} x1,x2,,xm 当且仅当不存在一组不全为0的标量 λ 1 , λ 2 , … , λ m \mathbf{\lambda_{1},\lambda_{2}, \ldots , \lambda_{m}} λ1,λ2,,λm时,可以称之为线性无关,例如:

λ 1 x 1 + λ 2 x 2 + ⋯ + λ m x m = 0 (2-7) \lambda_{1} \mathrm{x}_{1}+\lambda_{2} \mathrm{x}_{2}+\cdots+\lambda_{m} \mathrm{x}_{m}=0 \tag{2-7} λ1x1+λ2x2++λmxm=0(2-7)

  • 矩阵:二维数组,可以表示为以下形式

A = [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 … a m n ] (2-8) \mathbf{A}=\left[\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n} \end{array}\right] \tag{2-8} A=a11a21am1a12a22am2a1na2namn(2-8)

其中, A ∈ R m × n \mathbf{A}\in\mathbb{R}^{m \times n} ARm×n

给定两个矩阵: A ∈ R m × n \mathbf{A}\in\mathbb{R}^{m \times n} ARm×n B ∈ R n × p \mathbf{B}\in\mathbb{R}^{n \times p} BRn×p A B \mathbf{AB} AB的就很乘积可以表示为 C ∈ R m × p \mathbf{C}\in\mathbb{R}^{m \times p} CRm×p,其中:
C i j = ∑ k = 1 n A i k B k j (2-9) \mathbf{C}_{ij} = \sum_{k=1}^{n}\mathbf{A}_{ik}\mathbf{B}_{kj} \tag{2-9} Cij=k=1nAikBkj(2-9)

可以证明,矩阵积是关联的,但不一定是换算的。用数学语言来说:
( A B ) C = A ( B C ) (2-10) \mathbf{\left(AB\right)C = A\left(BC\right)} \tag{2-10} (AB)C=A(BC)(2-10)
对任意矩阵A、B、C成立(假设乘法合法)。

然而:
A B = B A (2-11) \mathbf{AB = BA} \tag{2-11}

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值