2020-1-24 深度学习笔记2 - 线性代数

本文深入探讨线性代数在深度学习中的基础概念,包括单位矩阵、逆矩阵、线性相关性、特征分解和奇异值分解等。通过了解这些概念,可以更好地理解线性方程组的求解、特征向量和奇异值在矩阵运算中的作用,以及它们如何应用于主成分分析PCA。
摘要由CSDN通过智能技术生成

第二章 线性代数

官网

线性代数是理解深度学习所必须掌握的基础数学学科之一

  • 线性代数主要是面向连续数学,而非离散数学。很多计算机科学家很少接触它。

  • 线性代数的几个数学概念

    • 标量(scalar):一个标量就是一个单独的数,它不同于线性代数中研究的其他大部分对象(通常是多个数的数组)。我们用斜体表示标量。标量通常被赋予小写的变量名称

    • 向量(vector):一个向量是一列数。这些数是有序排列的。通过次序中的索引,我们可以确定每个单独的数。通常我们赋予向量粗体的小写变量名称

      • 向量中的元素可以通过带脚标的斜体表示。向量x的第一个元素是x1
      • 符号-表示集合的补集中的索引。比如x−1表示x中除x1外的所有元素
    • 矩阵(matrix):矩阵是一个二维数组,其中的每一个元素由两个索引(而非一个)所确定。我们通常会赋予矩阵粗体的大写变量名称,比如A。

      • 在表示矩阵中的元素时,通常以不加粗的斜体形式使用其名称,索引用逗号间隔。比如, A 1 , 1 A_{1,1} A11表示A左上的元素, A m , n A_{m,n} Amn表示A右下的元素。
      • 通过用“:”表示水平坐标,以“i”表示垂直坐标i中的所有元素。比如,A{i,:}表示A中垂直坐标i上的一横排元素。这也被称为A的第i行(row)。同样地,A:,i表示A的第i列(column)。
      • 当需要明确表示矩阵中的元素时,我们将它们写在用方括号括起来的数组中。 [ A 1 , 1 A 1 , 2 A 2 , 1 A 2 , 2 ] \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \\ \end{bmatrix} [A1,1A2,1A1,2A2,2]
      • f ( A ) i , j f(A)_{i,j} f(A)i,j表示函数f作用在A上输出的矩阵的第i行第j列元素。此时不必将矩阵的变量名称小写化。
      • 矩阵的形状一样,我们可以把两个矩阵相加。两个矩阵相加是指对应位置的元素相
        加,比如C=A﹢B,其中 C i , j = A i , j ﹢ B i , j C_{i,j}=A_{i,j}﹢B_{i,j} Ci,j=Ai,jBi,j
      • 标量和矩阵相乘,或是和矩阵相加时,我们只需将其与矩阵的每个元素相乘或相加,比
        如D=a·B﹢c,其中 D i , j = a ⋅ B i , j ﹢ c D_{i,j}=a·B_{i,j}﹢c Di,j=aBi,jc,a和c为标量,D和B为矩阵。
      • 矩阵和向量相加,产生另一个矩阵:C=A﹢b,其中 C i , j = A i , j ﹢ b j C_{i,j}=A_{i,j}﹢b_j Ci,j=Ai,jbj,表示向量b和矩阵A的每一行相加。
    • 张量(tensor):在某些情况下,我们会讨论坐标超过两维的数组。一般一个数组中的元素分布在若干维坐标的规则网格中,我们称之为张量。

      • 张量中坐标为(i,j,k)的元素记作 A i , j , k A_{i,j,k} Ai,j,k
    • 转置(transpose),矩阵的转置是以对角线为轴的镜像,这条从左上角到右下角的对角线被称为主对角线(main diagonal)。

      • 矩阵A的转置表示为AT
      • ( A T ) i , j = A j , i (A^T)_{i,j}=A_{j,i} (AT)i,j=Aj,i
      • 向量可以看作只有一列的矩阵。向量的转置可以看作只有一行的矩阵。
      • 标量可以看作只有一个元素的矩阵。因此,标量的转置等于它本身。a=aT
    • 矩阵乘法(乘积) (matrix product)。两个矩阵A和B的矩阵乘积是第三个矩阵C。

      • 矩阵A的列数必须和矩阵B的行数相等。如果矩阵A的形状是m×n,矩阵B的形状是n×p,那么矩阵C的形状是m×p。
      • 矩阵乘法C=AB,定义是 C i , j = ∑ k A i , k B k , j C_{i,j}=\sum_{k} A_{i,k}B_{k,j} Ci,j=kAi,kBk,j
      • 2个矩阵乘法不是指2个矩阵中对应元素的乘积。2个矩阵中对应元素的乘积称为元素对应乘积(element-wise product)或者Hadamard乘积(Hadamard product),记为 A ⨀ B A\bigodot B AB
      • 两个相同维数的向量x和y的点积(dot product)可看作矩阵乘积,XTY。因此,可
        以把矩阵乘积C=AB中计算C{i,j}的步骤看作A的第i行和B的第j列之间的点积。
      • 矩阵乘法运算性质
        • 分配律,A(B+C)=AB+AC
        • 结合律,A(BC)=(AB)C
        • 交换律
          • 不同于标量乘积,矩阵乘积并不满足交换律(AB=BA的情况并非总是满足)
          • 两个向量的点积满足交换律 。xTy=yTx
        • 矩阵乘积的转置, (AB)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值