目 录
目 录 i
第 1 章 绪论 1
1.1 研究背景 1
1.2 研究目标及意义 1
1.3 研究现状 2
1.4 研究内容 3
1.5 本文的组织结构 3
第 2 章 相关介绍 5
2.1 Python 语言 5
2.2 Isaac Sim 仿真平台 5
2.3 Isaac Gym 强化学习平台 5
2.4 SolidWorks 软件 6
2.5 ROS 框架 6
2.6 强化学习 6
2.7 黎曼运动策略流程 7
2.8 URDF 格式 7
2.9 USD 格式 7
2.10 本章小节 8
第 3 章 机械臂的设计与建模 9
3.1 设计理念 9
3.1.1 灵活性设计理念 9
3.1.2 耐用性设计理念 9
3.2 设计挑战与解决方案 9
3.2.1 主要挑战 9
3.2.2 解决方案 10
3.3 各零件、装配体的设计图 10
第 4 章 NVIDIA Isaac Sim 环境仿真 21
4.1 NVIDIA Isaac Sim 平台介绍 21
4.2 黎曼运动策略流程介绍 21
4.3 机械臂模型的导入与设置 22
4.3.1 通过 URDF 工具导入机械臂 22
4.3.2 设置路径并导入 23
4.3.3 定义关节 Joint 24
4.3.4 为机械臂添加物理属性 24
4.3.5 调试机械臂的各项参数 24
4.3.6 检查参数设置是否合适 26
4.4 环境仿真的配置 26
4.4.1 添加舞台灯光 26
4.4.2 添加可视化碰撞网格 26
4.4.3 添加地面环境 29
4.5 使用 rmpflow 进行物理仿真与实验设计 29
4.5.1 通过机器人描述编辑器生成机器人描述文件 29
4.5.2 编辑 RmpFlow 配置文件 30
4.5.3 核心代码 33
4.5.4 效果展示 38
第 5 章 强化学习基础 41
5.1 机器学习 41
5.1.1 机器学习的主要类型 41
5.1.2 机器学习的应用 41
5.1.3 机器学习相对于传统编程的优势 42
5.1.4 机器学习的挑战 42
5.2 强化学习 42
5.2.1 强化学习的概念 42
5.2.2 强化学习的目标 42
5.2.3 强化学习的过程 42
5.2.4 强化学习的核心 42
5.2.5 强化学习的应用及相关领域 43
5.2.6 强化学习相对于传统机器学习的优势 43
5.3 PPO 算法 44
5.3.1 核心思想 44
5.3.2 关键特点 44
5.3.3 实现机制 45
5.3.4 应用领域 46
5.4 PPO 在机械臂控制中的应用 46
5.4.1 环境建模 46
5.4.2 策略学习 46
5.4.3 模拟和实际应用 47
第 6 章 利用 NVIDIA Isaac Gym 进行强化学习训练 48
6.1 NVIDIA Isaac Gym 平台介绍 48
6.1.1 Isaac Gym 平台的优势 48
6.2 训练框架与流程设计 49
6.2.1 环境与参数初始化 49
6.2.2 定义 RL 状态、动作状态和观察状态 50
6.2.3 加载主世界 51
6.2.4 设计奖励参数 52
6.2.5 满足重置的条件 52
6.2.6 重置之后的世界状态 52
6.2.7 添加 PPO 训练算法 53
6.2.8 训练结果 56
第 7 章 总结与展望 58
7.1 项目总结 58
7.1.1 RMPflow 应用: 58
7.1.2 强化学习应用: 58
7.2 展望未来 58
基于 Isaac Gym 和强化学习的机械臂的建模和控制算法研究
摘 要:
本研究旨在探索并实现基于 NVIDIA Isaac Gym 平台的机械臂精确控制,通过集成 RMPflow 方法和强化学习(RL)算法,使机械臂能够有效地移动并定位到特定物体。在机械臂的自动化和智能化领域,这种集成技术的研究不仅推动了控制策略的发展,也为机械臂在复杂环境中的应用提供了新的解决方案。
随着工业自动化和精密制造的需求增加,机械臂的运动控制技术成为了研究的重点。传统的控制方法虽然在规则环境下表现良好,但面对复杂多变的任务场景时往往显得力不从心。因此,如何提高机械臂的自适应性和智能性,是当前研究的核心问题之一。
本项目利用 Isaac Gym 平台的高效仿真能力,采用了两种先进的控制策略:基于几何运动学的 RMPflow 方法和基于模型的强化学习算法。RMPflow 通过构建黎曼流形上的运动策略,优化机械臂运动的安全性和流畅性;而强化学习算法通过与环境的交互学习,使机械臂能够在未知环境中优化其行动策略,提高其决策的精确度和效率。
在 Isaac Gym 平台上,我们模拟了一个具体的物体搬移任务,机械臂需要精确移动到指定物体的位置。通过大量的仿真实验, 我们比较了 RMPflow 和 RL 两种方法在不同任务情景下的表现。实验结果表明,两种方法各有优势:RMPflow在确保运动平稳性和避免碰撞方面更为出色,而 RL 在适应新环境和优化长期任务执行方面展现了更好的潜力。
研究成果不仅增强了机械臂在复杂环境中的应用能力,也为未来机械臂在高精度任务中的使用如手术辅助、精密组装等提供了技术支持。此外,所开发的集成控制策略可为未来机械臂的设计提供新的视角,尤其是在人机协作和自动化服务领域。
关键词:Isaac 平台; 黎曼运动策略; 机械臂; 强化学习
Research on the modeling and control algorithm of robotic arm based on Isaac Gym and reinforcement learning
Hainan Normal University, Haikou 571158, P. R. China)
Abstract: This study aims to explore and implement precise control of robotic arms us- ing the NVIDIA Isaac Gym platform, by integrating RMPflow methods and Reinforce- ment Learning (RL) algorithms. This allows the robotic arm to effectively move and position itself to specific objects. In the field of automation and intelligence of robotic arms, this integrated technology not only advances control strategies but also provides new solutions for the application of robotic arms in complex environments.
As the demand for industrial automation and precision manufacturing increases, the motion control technology of robotic arms has become a focal point of research. Traditional control methods, although effective in structured environments, often fall short in complex and variable task scenarios. Therefore, enhancing the adaptability and intelligence of robotic arms is one of the core issues in current research.
This project leverages the efficient simulation capabilities of the Isaac Gym plat- form, adopting two advanced control strategies: the RMPflow method based on geo- metric kinematics, and a model-based reinforcement learning algorithm. RMPflow opti- mizes the safety and smoothness of the robotic arm’s movements by constructing motion policies on Riemannian manifolds; meanwhile, the reinforcement learning algorithm in- teracts with the environment to optimize its action strategy, improving the precision and efficiency of its decisions.
On the Isaac Gym platform, we simulated a specific object relocation task where the robotic arm needs to precisely move to the location of a designated object. Through extensive simulation experiments, we compared the performance of the RMPflow and RL methods in different task scenarios. The experimental results show that both methods have their advantages: RMPflow excels in ensuring movement stability and avoiding collisions, while RL demonstrates better potential in adapting to new environments and optimizing long-term task execution.
The research results not only enhance the capability of robotic arms in complex environments but also provide technical support for future high-precision tasks such as surgical assistance and precision assembly. Moreover, the developed integrated control strategy offers a new perspective for the design of future robotic arms, especially in areas of human-robot collaboration and automated services.
Key words: Isaac platform; RMP; Robotic arm; RL
1.1 研究背景
机械臂是一种多关节的自动化装置,广泛应用于工业、研究和服务领域等各种复杂任务中。抓取型机械臂是机器人领域中一个重要的研究方向,其发展涉及到多学科的知识融合,包括机械工程、计算机视觉、控制理论等。[1]
当前国内抓取型机械臂正快速发展,技术创新涵盖视觉感知、柔性抓取、协作机械臂等领域,多学科的合作使得研究更全面、深入。国内的抓取型机械臂研究不仅注重基础理论研究,还更加注重技术创新和应用推广, 目前在制造业、物流仓储和智能制造等工业领域已得到广泛应用,与其相关的产业链也在不断完善,有望形成更加健康的产业生态。
在政策上,国内加强了抓取型机械臂领域的人才培养,培养了一批高水平的研究人才。同时, 国内积极开展国际合作,吸引国际顶级学者和企业参与研究。政府通过发布相关标准和政策,促进了抓取型机械臂技术的发展,极大地推动了技术规范化和产业化。政策支持和标准制定推动了产业化和国际合作,为未来抓取型机械臂和相关机器人的发展奠定基础。
本研究意在通过深度学习技术减轻传统机械臂抓取任务中的人工规划负担,并提高机械臂的感知与识别效率,优化抓取策略,同时探索在 Isaac Gym 平台上开发机械臂的潜力,具有重要的实际应用价值和研究意义。
传统的机械臂抓取任务通常需要复杂的手工规划,这不仅耗时而且效率低下。通过引入深度学习技术,机械臂能够自主学习并从大量数据中提取有效信息,形成适应多种场景的抓取策略。这种方法显著减少了对人工干预的依赖,降低了操作的复杂性,使得抓取过程更加自动化和智能化。
深度学习算法通过学习复杂的特征表示,极大地提升了机械臂对不同形状、大小物体的感知和识别能力。这不仅提高了机械臂对工作环境的理解,还增强了对目标物体的识别准确性,从而使机械臂能更有效地执行精确操作。[2]
利用深度学习优化抓取策略,使得机械臂能在多变的环境中灵活适应。机械臂可以通过分析和学习大量的抓取案例, 自动调整其抓取姿态和力度,实现更稳定和高效的操作。这种学习能力的提升,为机械臂处理更复杂、更多样化的任务提供了可能。[3]
目前,国内开发机械臂的软件主要集中在 Simscape Multibody、Adams、Webots、 PyBullet 等平台,极少有研究团队使用Isaac Gym 平台。Isaac Gym 提供了接近现实的物理仿真环境,支持强化学习任务,具备多模态传感器模拟能力,并且以其灵活性、开源性和可扩展性,成为开发机械臂的理想选择。本研究的开展有望推动更多团队利用这一平台,探索机械臂技术的新前沿。
本研究不仅推动了机械臂技术的发展,也为未来机械臂的应用提供了新的视角和技术路径,特别是在提高机械臂操作的智能化和自动化水平方面展现出广阔的应用前景。
中国在智能制造和工业机器人方面取得了显著进展。相关研究侧重于机器人在制造业中的应用,包括自动化生产线、协作机器人系统等。近年来,中国机械臂企业不断发展壮大,逐渐成为全球机械臂市场的重要参与者,一些国内企业的机械臂产品已经在国际上获得了广泛的认可。而现在,现代机械臂趋向于具备更强的智能控制和感知能力。研究者通过整合计算机视觉、传感器技术和深度学习等方法,使机械臂能够更灵活地感知和适应环境。[4]
中国在很多领域都研发了相关的应用技术。在医疗领域,中国的研究者也在探索机械臂在手术辅助、康复治疗等方面的应用;在农业领域,研究者在机械臂和无人机结合的研究中取得了成果,用于农业作业和精准农业;同时,中国研究者致力于开发适用于服务行业的机器人,如餐厅服务机器人、导览机器人等;协作机器人系统的研究不断取得进展,使机械臂能够与人类或其他机器人协同工作。这涉及到路径规划、力控制和人机交互等方面的研究;中国在教育领域也探索了机械臂在学校、培训机构中的应用,以推动机器人技术的普及与教育。
在技术方面,机械臂的精度和稳定性得到了显著提高,可以实现更高精度的操作。强化学习在机械臂的自主控制中发挥着越来越重要的作用。通过强化学习算法,机械臂能够学习并优化在不同环境中执行任务的策略。中国的研究者在深度学习与机械臂结合的领域取得了一些成果,在创新设计和柔性机械臂方面也进行了一系列研究,提高了机械臂的感知和控制能力,以适应不同的应用场景。其次,国内企业在创新上也进行了大量投入,如人工智能、视觉识别等,使机械臂的智能化水平不断提升,通过激光传感器、3D 视觉系统等技术的应用,机械臂可以实现自主感知和决策,提高工作效率和安全性。此外,国内机械臂产业在控制系统、传动系统、执行器等方面也取得了一系列创新成果,提升了机械臂的性能和可靠性。
当前国内主要的两个研究抓取型机械臂的公司为 xyz robotics 和梅卡曼德,从
产品上看,梅卡曼德类别较全,大小物体都能抓,而 xyz robotics 专注于小物品的抓取。主要技术都是通过采样视觉技术进行物体的分割,并依赖于传统的机器人控制程序进行抓取。但当前抓取型机械臂大多以固定场景为主,且视觉技术的深度学习都是以已知物体作为样本进行学习训练,遇到全新物体都需要重新学习,在智能化和无人化方面还有很长的路要走。
本研究旨在通过 SolidWorks 软件设计和创建一个高度详细九自由度的机械臂模型,并利用NVIDIA Isaac Sim 平台进行环境仿真以及利用NVIDIA Isaac Gym平台进行强化学习训练。该机械臂设计为一端固定于支撑平台,而其余部分通过多个精密控制的关节实现灵活运动,包括但不限于折叠、旋转、夹取与释放等操作。此机械臂的设计允许其模拟人类手臂的动作范围, 进而执行一系列复杂任务,特别是在自动化和机器人技术领域中常见的夹取与释放动作。
关键的技术创新包括使用先进的联动机构,使得机械臂可以精确地感知和定位实时物体。通过集成强化学习(Reinforcement Learning, RL)算法和机器人运动规划和控制的框架 RMPflow(Riemannian Motion Policies flow),机械臂能够在仿真环境中自我学习和优化,逐步提高其执行任务的准确性和效率。此外,Isaac Gym平台的使用不仅加速了训练过程,还提供了一个逼真的物理仿真环境,使得从仿真到现实世界的迁移成为可能。本研究的目标是通过深度学习和仿真技术,推进机械臂在自动化领域中的应用,特别是在高精度操作需求日益增长的背景下,开发出能够执行复杂操作的机械臂系统。
本文共分为七章
第一章,绪论。主要介绍了基于 Isaac gym 和强化学习的机械臂的建模和控制算法研究的研究背景、研究目标、研究意义、研究现状和研究内容。
第二章,相关技术背景。详细讲述研究过程中所应用的关键技术。
第三章,机械臂的设计与建模。详细介绍了机械臂的设计理念、问题与挑战以及机械臂的设计图。
第四章,NVIDIA Isaac Sim 环境仿真。详细介绍了通过 RMPflow 方式在仿真平台实现机械臂的导入、配置以及机械臂抓取任务, 并着重介绍了 RMPflow 的算法以及相关数学公式。
第五章,强化学习基础。本章介绍了机器学习、强化学习、 PPO 算法的相关资料,以及在机械臂控制中的应用。
第六章,利用NVIDIA Isaac Gym 进行强化学习训练。本章详细介绍了NVIDIA
Isaac Gym 仿真平台,以及强化学习的训练框架与流程设计。
第七章,总结与展望。本章对该两种方式实现机械臂抓取进行了总结,并探索了未来的研究方向。
本章将阐述基于NVIDIA Isaac Sim 和强化学习的机械臂的建模和控制算法研究过程中所使用的技术。机械臂的设计与建模使用了 SolidWorks 软件,生成装配体(. Sldasm)文件,并通过 sw_urdf_exporter 插件将 Sldasm 文件转换为 URDF 文件以载入 ROS(Robot Operating System)环境中。功能的实现以 Python 语言为基础,使用 NVIDIA Isaac Sim 平台进行环境仿真以及利用NVIDIA Isaac Gym 平台进行强化学习训练。通过集成强化学习(Reinforcement Learning, RL)算法和机器人运动规划和控制的框架 RMPflow(Riemannian Motion Policies flow)实现机械臂的运动任务。
Python 是一种高级编程语言,它设计哲学强调代码的可读性与简洁性,支持多种编程范式,包括面向对象、命令式、函数式和过程式编程。[4] 由于其易于学习、可读性强、可跨平台切拥有广泛的标准库使其成为最受欢迎的编程语言之一,广泛应用于 Web 开发、数据科学、人工智能、科学计算、自动化脚本和许多其他领域。[5]
NVIDIA Isaac Sim 是一个先进的仿真平台,专门为机器人学和自动化领域设计。它基于 NVIDIA Omniverse 平台,提供了一个高度真实和物理准确的 3D 环境,用于训练和测试机器人模型。Isaac Sim 利用 NVIDIA 的强大 GPU 技术,实现了实时光线追踪和物理仿真,为机器人视觉、感知、以及机器学习算法提供了理想的测试环境。平台支持多种传感器仿真,包括立体视觉、激光雷达和红外等,确保机器人可以在虚拟环境中准确感知周围世界。此外, Isaac Sim 集成了深度学习和强化学习工具,允许用户使用真实世界的数据训练复杂的机器人行为模型,并通过仿真环境的快速迭代优化性能。其强大的可扩展性和灵活的 API 接口,使得它可以无缝集成进各种机器人开发工作流程中,从而显著提高机器人设计和测试的效率,加速从概念到现实世界应用的转化。
NVIDIA Isaac Gym 是一个革命性的仿真平台,专为加速机器人学和深度强化学习(RL)研究而设计。它充分利用 NVIDIA GPU 的并行计算能力,提供了一个
高效的环境,能够同时模拟数千个机器人实体,从而极大地提高了强化学习训练的速度和规模。Isaac Gym 直接在 GPU 上执行所有物理计算和渲染,避免了 CPU与 GPU 之间的数据传输瓶颈,显著提升了仿真效率。这使得研究人员能够在更短的时间内进行大规模实验,迅速迭代和优化其 RL 算法。平台支持复杂环境和多样的机器人模型,为 RL 任务提供了丰富多变的训练场景。此外, Isaac Gym 通过紧密集成 PyTorch 等流行的深度学习框架,简化了复杂 RL 模型的开发和部署过程,使研究人员能够专注于算法创新。其强大的性能和灵活性使 Isaac Gym 成为机器人学和 AI 领域研究人员开展高效强化学习研究的首选平台。[6]
SolidWorks 是一款广受欢迎的计算机辅助设计(CAD)和计算机辅助工程(CAE)软件,适用于从单一零件设计到复杂机械装置的整体组装设计。相较于同类产品, SolidWroks 拥有更友好的界面、强大的集成性, 所以自 1995 年首次发布以来,它已成为专业工程师和设计师在全球范围内的首选工具之一,用于产品设计、模拟、发布和管理。
ROS(Robot Operating System)是一个灵活的框架,旨在为机器人软件开发提供一套丰富的工具和库。[7] 它不是传统意义上的操作系统,而是一套运行在现有操作系统之上的中间件,支持诸多机器人编程和硬件抽象,使得开发者可以更加高效地构建复杂且可靠的机器人应用程序。ROS 提供了包括硬件抽象、底层设备控制、常用功能实现、消息传递机制以及包管理等核心功能。[8] 它的设计哲学强调模块化和可重用性,使得研究人员和开发者可以共享和协作开发跨多个项目的代码。此外, ROS 社区活跃,提供了大量的教程、工具和已开发的软件包, 这些资源大大降低了机器人软件的开发门槛,加速了从研究到产品化的过程。随着时间的推移,ROS 已经成为全球机器人研究和开发中最广泛使用的软件平台之一,支持从简单的教学实验到复杂的商业和工业应用。
强化学习(Reinforcement Learning, RL)是机器学习的一个分支,它主要关注如何让智能体在环境中通过试错来学习最优策略,以达到最大化累积奖励的目标。[9] 在强化学习框架中,智能体从环境状态出发,采取行动,然后环境根据这些行动提供反馈,通常是奖励或惩罚,智能体利用这些反馈来调整其行为策略。RL的核心组成包括状态(state)、行动(action)、奖励(reward)和策略(policy),其中策略定义了在特定状态下应采取的行动。[10] 强化学习广泛应用于各种领域,如
游戏、机器人控制、推荐系统和自动驾驶等,特别是在处理决策过程和控制问题时表现出了巨大的潜力。与其他机器学习方法相比, RL 的独特之处在于它不依赖于预先标注的数据集,而是通过与环境的交互自我学习,寻找最优化的行为策略。
黎曼运动策略流程—RMPflow(Riemannian Motion Policies flow)是一种用于机器人运动规划和控制的算法框架,基于黎曼流形上的运动策略。[11] 该框架通过结合全局任务空间和局部传感器空间的信息,提供了一种高效且灵活的方式来处理复杂的机器人运动规划问题。核心思想是将机器人运动的不同方面(如避障、目标跟踪等)建模为黎曼流形上的运动策略,并通过递归算法将这些策略融合成一个统一的控制策略。
黎曼运动策略流程使用一种递归算法来组合不同的运动策略。这个过程从机器人的叶子节点(通常是感知任务或是直接的控制目标)开始,每个节点都计算其自身的运动策略(RMP), 然后这些策略沿着机器人的运动学链向根节点传播和融合。在根节点处,所有的运动策略被合成为最终的运动指令,然后这些指令再递归地被分解和传递给机器人的各个关节和部件。
黎曼运动策略流程可以广泛应用于各种机器人系统,如多自由度机械臂、移动机器人和人形机器人等,特别是在需要处理避障、路径规划、目标跟踪等多目标集成的场景中。通过为每个任务定义适当的黎曼流形和运动策略, RMPflow 能够优雅地处理这些复杂的任务融合问题。
URDF 格式,全称为 Unified Robot Description Format,是一种基于 XML 的格式,专门用于全面描述机器人的结构,包括其各个部分的物理特征、尺寸、形状、关节、传感器配置等信息以及如何通过各种类型的关节连接在一起。它是 ROS (Robot Operating System)环境中使用的标准方式,使得机器人模型可以在不同的项目和仿真环境中被轻松共享和重用。[12] URDF 的设计支持模块化,允许机器人的部件被分解为可重用的组件,从而促进了代码和资源的共享。此外,虽然它主要关注于描述静态结构, 但 URDF 还可以通过扩展来包含传感器和执行器的配置,使其成为描述机器人模型的通用且灵活的工具。
USD(Universal Scene Description)是一种用于描述复杂的 3D 场景的文件格式。它旨在提供一种高效、可扩展的方法来描述静态和动态的视觉场景,包括场景中的几何形状、着色、光照、动画等。USD 的核心优势在于其强大的层叠(layering)
和重载(overrides)机制,这些机制允许多个团队并行工作于同一场景的不同部分,之后再将这些部分无缝整合到一起。此外, USD 支持高效的数据交换和动态流式传输,使得处理大型场景变得更加高效。
在 Isaac Sim 平台中,USD 文件被用来构建和描述机器人、环境以及与之交互的整个场景。这包括机器人的模型、环境布局、光照设置和物理属性等。 Isaac Sim利用 USD 的强大功能,使得用户能够创建复杂、高度交互的 3D 仿真环境,从而进行机器人的视觉感知、导航和操控等方面的仿真和训练。
该章节主要介绍了基于NVIDIA Isaac Sim 和强化学习的机械臂的建模和控制算法研究所需要的相关技术和平台。
本章将介绍通过 SolidWorks 软件进行机械臂设计与建模的设计理念、流程以及最终的结果展示。
在设计具有九自由度的机械臂时,灵活性和耐用性成为设计理念的关键组成部分,[13] 以确保机械臂能够适应复杂的操作需求并保持长期的可靠性。
为了实现高度的灵活性,这款机械臂采用了包括底座旋转、三段式臂架构(前臂、中臂、后臂),以及一个可进行 360 度旋转的手部。此设计使得机械臂能够模拟接近人类手臂的运动范围,从而执行精细和复杂的操作任务。九自由度的设置不仅增加了操作的可能性,还使得机械臂能够在狭小或复杂的空间内工作,极大地提升了其应用场景的广泛性。设计时还考虑到了模块化和可扩展性,使得机械臂可以根据特定任务需求进行快速调整或升级,增强其多功能性。
考虑到机械臂的耐用性和可靠性,选择钣金材料构造其主要结构部分。钣金不仅具有高强度和良好的耐腐蚀性,而且通过精密的加工和制造工艺,可以实现机械臂结构的轻量化,同时保持高度的稳定性和耐用性。在设计过程中,特别注重各关节和连接部分的耐磨性设计,采用高质量的轴承和密封技术,减少长期使用中的磨损和维护需求。此外, 通过对钣金表面进行特殊处理,如喷涂或镀层,可以进一步提高机械臂的耐环境侵蚀能力,保证在各种工作环境下的持久性能。
通过将灵活性和耐用性融入设计理念中,该九自由度机械臂不仅能够执行广泛的操作任务,而且保证了在复杂、多变的工作环境中的高效和可靠运行,满足自动化和机器人技术领域对高精度操作的需求。
3.2.1 主要挑战
1. 零件数量较多,尺寸设计较为复杂,在装配时很容易出现尺寸异常导致没办法添加合适的配合。
2. 定义各个杆件(link)的父子关系以及每个关节运动时的最大力(max effort)
和最大角速度(max velocity)等参数需要结合实际运行情况,所以很难第一时间全部设定合适的数据。
1. 在装配过程中及时调整各个零件参数,使其能够完美装配。
2. 在仿真环境中不断调整和测试机械臂的参数,使参数能够使机械臂较正常的完成作业。

图 3.1 后臂

图 3.2 右中臂

图 3.3 左中臂
1384

被折叠的 条评论
为什么被折叠?



