18、高效欧几里得最小生成树(EMST)聚类算法:原理、应用与优化

高效欧几里得最小生成树(EMST)聚类算法:原理、应用与优化

1. 引言

在图像分割和目标识别等任务中,聚类算法起着至关重要的作用。聚类是一种探索性数据分析工具,旨在将相似的对象分组在一起。传统的聚类技术,如基于划分的聚类、基于密度的聚类、基于网格的聚类、模糊聚类和层次聚类等,各有优缺点。而基于最小生成树(MST)的聚类技术,不假设数据点围绕中心分组或由规则几何曲线分隔,而是利用树边信息将数据点划分为聚类,尤其擅长检测具有不规则边界的聚类。

最小生成树方法是对任意数据集的图形分析。在图中,两点或顶点可以通过直接边或边序列(路径)连接。路径长度是其上的边数,顶点的连接度是连接到该顶点的边数。图中的环是封闭路径,连通图中每对顶点之间至少有一条路径,树是无封闭环的连通图,生成树包含数据集中的每个点。若为树中的每条边分配一个值,则该树为加权树,树的权重是边权重的总和,最小生成树是总权重最小的生成树。确定最小生成树中边的两个重要性质是割性质和环性质。割性质表明,跨越顶点集任意两个划分的最小权重边必定属于最小生成树;环性质表明,图中任何环中权重最大的边不可能在最小生成树中。因此,当每条边的权重表示两个端点之间的距离时,最小生成树中的任何边都是连接的两个子树之间的最短距离。理论上,移除最长边会得到两个聚类,移除次长边会得到三个聚类,以此类推。

在传统的最小生成树问题中,给定一个具有 N 个顶点和 E 条边的无向、连通和加权图,标准解决方案的时间复杂度为 O(E log N)。自 1926 年 Borůvka 提出第一个最小生成树算法以来,陆续出现了最优精确 MST 算法、快速近似 MST 算法、分布式 MST 算法和并行 MST 算法等。这些算法在图像分割、聚类、分类等领域得到了广泛应用。 <

内容概要:本文详细介绍了一个基于黏菌优化算法(SMA)优化的Transformer-LSTM组合模型在多变量回归预测中的完整项目实例。项目通过融合Transformer的全局特征提取能力LSTM的局部时序建模优势,构建层次化混合模型,并引入SMA算法实现超参数自动寻优,提升模型性能泛化能力。项目涵盖数据预处理、模型设计、训练优化、结果评估、GUI可视化界面开发及工程化部署全流程,配套完整代码目录结构设计,支持端到端自动化建模跨平台应用。; 适合人群:具备一定机器学习和深度学习基础,熟悉Python编程PyTorch框架,从事数据科学、人工智能研发或工程落地的相关技术人员,尤其是工作1-3年希望提升模型自动化实战能力的研发人员。; 使用场景及目标:①应用于智能制造、金融风控、智慧医疗、能源管理、气象预测、智能交通等多变量时间序列预测场景;②掌握TransformerLSTM融合建模方法;③学习SMA等群体智能算法在深度学习超参数优化中的实际应用;④实现从数据处理到模型部署的全流程自动化开发。; 阅读建议:建议结合文档中的代码示例GUI实现部分动手实践,重点关注模型架构设计、SMA优化机制和训练流程细节,配合可视化分析深入理解模型行为。同时可扩展尝试不同数据集和优化算法,提升对复杂时序预测任务的综合把控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值