高效欧几里得最小生成树(EMST)聚类算法:原理、应用与优化
1. 引言
在图像分割和目标识别等任务中,聚类算法起着至关重要的作用。聚类是一种探索性数据分析工具,旨在将相似的对象分组在一起。传统的聚类技术,如基于划分的聚类、基于密度的聚类、基于网格的聚类、模糊聚类和层次聚类等,各有优缺点。而基于最小生成树(MST)的聚类技术,不假设数据点围绕中心分组或由规则几何曲线分隔,而是利用树边信息将数据点划分为聚类,尤其擅长检测具有不规则边界的聚类。
最小生成树方法是对任意数据集的图形分析。在图中,两点或顶点可以通过直接边或边序列(路径)连接。路径长度是其上的边数,顶点的连接度是连接到该顶点的边数。图中的环是封闭路径,连通图中每对顶点之间至少有一条路径,树是无封闭环的连通图,生成树包含数据集中的每个点。若为树中的每条边分配一个值,则该树为加权树,树的权重是边权重的总和,最小生成树是总权重最小的生成树。确定最小生成树中边的两个重要性质是割性质和环性质。割性质表明,跨越顶点集任意两个划分的最小权重边必定属于最小生成树;环性质表明,图中任何环中权重最大的边不可能在最小生成树中。因此,当每条边的权重表示两个端点之间的距离时,最小生成树中的任何边都是连接的两个子树之间的最短距离。理论上,移除最长边会得到两个聚类,移除次长边会得到三个聚类,以此类推。
在传统的最小生成树问题中,给定一个具有 N 个顶点和 E 条边的无向、连通和加权图,标准解决方案的时间复杂度为 O(E log N)。自 1926 年 Borůvka 提出第一个最小生成树算法以来,陆续出现了最优精确 MST 算法、快速近似 MST 算法、分布式 MST 算法和并行 MST 算法等。这些算法在图像分割、聚类、分类等领域得到了广泛应用。 <
订阅专栏 解锁全文
1089

被折叠的 条评论
为什么被折叠?



