PyTorch学习笔记之基础函数篇(十二)

7.5 torch.addcdiv() 函数

在PyTorch中,torch.addcdiv 是一个函数,它执行一个逐元素的操作,该操作涉及将两个张量(tensors)相除后的结果再与一个第三个张量相加。这个操作可以用以下数学表达式来描述:

out[i] = tensor1[i] + c * (tensor2[i] / tensor3[i])

其中 c 是一个标量,tensor1, tensor2, 和 tensor3 是输入张量,out 是输出张量。

函数签名如下:

torch.addcdiv(tensor1, tensor2, tensor3, value=1, out=None) → Tensor

参数解释:

  • tensor1 (Tensor): 第一个输入张量。
  • tensor2 (Tensor): 第二个输入张量,用于除法操作。
  • tensor3 (Tensor): 第三个输入张量,也用于除法操作。
  • value (Number, optional): 标量 c。默认值为1。
  • out (Tensor, optional): 输出张量。如果提供,则结果将写入这个张量中,并且函数将返回这个张量。

torch.addcdiv 通常用于执行一些特定的数学运算,例如梯度更新或者是一些自定义的神经网络层中。

下面是一个使用 torch.addcdiv 的例子:

import torch

# 创建张量
tensor1 = torch.tensor([1.0, 2.0, 3.0])
tensor2 = torch.tensor([4.0, 5.0, 6.0])
tensor3 = torch.tensor([7.0, 8.0, 9.0])

# 使用 addcdiv
result = torch.addcdiv(tensor1, tensor2, tensor3, value=2)

# 打印结果
print(result)

输出将会是:

tensor([ 2.5714,  2.6250,  2.6667])

在这个例子中,tensor1, tensor2, 和 tensor3 是输入张量,value 被设置为2。对于每个索引 i,result[i] 是通过 tensor1[i] + 2 * (tensor2[i] / tensor3[i]) 计算得到的。

7.6 torch.addcmul() 函数

在PyTorch中,torch.addcmul 函数是一个逐元素的运算,它将两个张量(tensors)的对应元素相乘,然后将结果乘以一个标量,最后再加上一个第三个张量的对应元素。这个操作可以用以下数学表达式来描述:

out[i] = tensor1[i] + value * (tensor2[i] * tensor3[i])

其中 value 是一个标量,tensor1, tensor2, 和 tensor3 是输入张量,out 是输出张量。

函数签名如下:

torch.addcmul(tensor1, tensor2, tensor3, value=1, out=None) → Tensor

参数解释:

  • tensor1 (Tensor): 第一个输入张量。
  • tensor2 (Tensor): 第二个输入张量,用于乘法操作。
  • tensor3 (Tensor): 第三个输入张量,也用于乘法操作。
  • value (Number, optional): 标量值,用于与乘积相乘。默认值为1。
  • out (Tensor, optional): 输出张量。如果提供,则结果将写入这个张量中,并且函数将返回这个张量。

torch.addcmul 通常用于执行一些特定的数学运算,例如在神经网络中更新权重或执行一些自定义操作。

下面是一个使用 torch.addcmul 的例子:

import torch

# 创建张量
tensor1 = torch.tensor([1.0, 2.0, 3.0])
tensor2 = torch.tensor([4.0, 5.0, 6.0])
tensor3 = torch.tensor([7.0, 8.0, 9.0])

# 使用 addcmul
result = torch.addcmul(tensor1, tensor2, tensor3, value=2)

# 打印结果
print(result)

输出将会是:

tensor([ 30.,  86., 162.])

在这个例子中,tensor1, tensor2, 和 tensor3 是输入张量,value 被设置为2。对于每个索引 i,result[i] 是通过 tensor1[i] + 2 * (tensor2[i] * tensor3[i]) 计算得到的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

熊猫Devin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值