多类别变化检测综述
文章目录
CD技术通过分析同一地理区域在不同时间获取的多时相遥感影像,来识别地面物体的变化。该技术对环境监测、城市扩张与重建以及灾害评估等研究领域具有重要意义。
传统BCD主要关注变化区域和非变化区域,无法提供更细致的土地利用和覆盖(Land Use and Land Cover, LULC)变化信息。随着地球观测卫星技术的不断进步,遥感影像的空间分辨率不断提高,使得多类别变化检测(Multi-class Change Detection, MCD)成为研究的热点方向。MCD能够反映更详细的土地变化,与传统BCD相比,MCD能够区分不同的LULC变化类别。
尽管目前有许多关于变化检测的综述,但大多数工作仍集中在BCD上。本文专注于MCD的最新进展,包括挑战、数据集、方法、应用和未来研究方向。
挑战
-
视觉特征混淆(Visual feature confusion):
由于成像条件的差异(例如不同的拍摄角度或季节)可能导致即便是未变化的特征在光学遥感影像中也存在较大的光谱差异,这增加了识别变化区域的难度,从而影响MCD的准确性。
-
“椒盐”噪声(“Salt-and-pepper” noise):
在使用传统的像素方法进行MCD时,由于遥感影像对中存在的光谱变异性,容易产生大量“椒盐”噪声,这会显著降低变化检测结果的质量。
-
变化类别的不平衡(Imbalance of change classes):
MCD需要区分不同的变化类别,而在实际变化图中,不同变化类别的面积比例往往是不平衡的。某些变化类别可能只集中在小范围的局部区域,因此由于训练样本数量少,准确挖掘小的变化类别通常比较困难。
-
复杂背景(Complex background):
变化通常只发生在区域的一部分,而MCD过程受到大量未变化区域背景的干扰。未变化区域通常占变化参考图中的大部分面积,并且经常具有复杂的地面特征分布,这可能导致MCD结果不佳。
这些挑战指出了MCD在实际遥感影像分析中的复杂性,并