资源 | 麻省理工学院开放 2018 自动驾驶课程

640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1


编辑 | SuiSui


这门课主要通过实际上手自动驾驶汽车项目来讲述深度学习的实践和应用,主要面向初学者,专为机器学习新手设计,但该领域的高级研究人员也可以通过这个课程对深度学习以及其应用有一个更完整的全面总结和理解。


如果你对这个课程感兴趣,以下几点可能会比较有用:


1. 在网站上注册一个帐户,以确保你能跟进最新课程。课程免费,向公众开放。


账户注册:

https://selfdrivingcars.mit.edu/register


如果您是麻省理工学院的学生,想要获得学分,请在此注册。


注册地址:

http://web.mit.edu/registrar/reg/prereg_info_iap.html


2. 两种方法加入我们的Slack。


使用MIT学院邮箱注册

https://deep-mit.slack.com/join/signup

受邀注册

https://deep-mit-slack.herokuapp.com/


3. 2017年的课程演讲和嘉宾讲座


https://www.youtube.com/watch?v=1L0TKZQcUtA&feature=youtu.be&list=PLrAXtmErZgOeiKm4sgNOknGvNjby9efdf


4.如果您有任何疑问,请查看FAQ


https://docs.google.com/document/d/1ZqgghxV1lpZeWUv5zNK0gMUBHfYTw9n6eYzzx9j8nok/edit?usp=sharing


5.已经报名的同学,请查看演讲厅地址等详细信息


https://docs.google.com/document/d/1Sqj4byBMQ1GEIdM7JrWm6VyOnW83Eizd5jFFl0-JJtc/edit


6. 在Twitter,LinkedIn,Instagram,Facebook上与Lex交流,或在YouTube上订阅。


https://twitter.com/LexFridman

https://www.linkedin.com/in/lexfridman/

https://www.instagram.com/lexfridman/

https://www.facebook.com/lexfridman

https://www.youtube.com/lexfridman


7.学习MIT6.S099:人工智能课程安排(https://agi.mit.edu)。


课程信息


  • 时间/日期:1月8日-19日,每天下午7点开始

  • 课时:60-90分钟

  • 讲师: Lex Fridman

  • 联系方式: deepcars@mit.edu


MIT 6.S094: Deep Learning for Self-Driving Cars是一个前沿领域的研究课程,课程研究小组包括:


0?wx_fmt=png


2018课程和演讲安排


0?wx_fmt=png


2017年课程PPT以及演讲视频地址


Lecture 1: Introduction to Deep Learning and Self-Driving Cars


课件地址:

https://www.dropbox.com/s/gmgmnskg4tw6mmx/lecture1.pdf?dl=1
演讲视频:

https://youtu.be/1L0TKZQcUtA?list=PLrAXtmErZgOeiKm4sgNOknGvNjby9efdf


Lecture 2: Deep Reinforcement Learning for Motion Planning


课件地址:

https://www.dropbox.com/s/2z7276330jaw37k/lecture2.pdf?dl=1
演讲视频:

https://www.youtube.com/watch?v=QDzM8r3WgBw&list=PLrAXtmErZgOeiKm4sgNOknGvNjby9efdf


Lecture 3: Convolutional Neural Networks for End-to-End Learning of the Driving Task


课件地址:

https://www.dropbox.com/s/q34bi7t0udms01x/lecture3.pdf?dl=1
演讲视频:

https://www.youtube.com/watch?v=U1toUkZw6VI&list=PLrAXtmErZgOeiKm4sgNOknGvNjby9efdf


Lecture 4: Recurrent Neural Networks for Steering through Time


课件地址:

https://goo.gl/qG4Ys9
演讲视频:

https://www.youtube.com/watch?v=nFTQ7kHQWtc&list=PLrAXtmErZgOeiKm4sgNOknGvNjby9efdf


Lecture 5: Deep Learning for Human-Centered Semi-Autonomous Vehicles


课件地址:

https://www.dropbox.com/s/n76k1ho0okxp9pt/lecture5.pdf?dl=1
演讲视频:

https://www.youtube.com/watch?v=ByZF8_-OJNI&list=PLrAXtmErZgOeiKm4sgNOknGvNjby9efdf


Extra: MIT Sloan: Intro to Machine Learning (in 360/VR)


课件地址:

https://www.dropbox.com/s/26co4m36ew6952d/gbair-lex-lecture-combined.pdf?dl=1
演讲视频:

https://www.youtube.com/watch?v=s3MuSOl1Rog&index=8&list=PLrAXtmErZgOeiKm4sgNOknGvNjby9efdf


2017嘉宾演讲


主题1:Technology, Policy and Vehicle Safety in the Age of AI


Chris Gerdes
Professor, Stanford
演讲视频:

https://www.youtube.com/watch?v=LDprUza7yT4s&list=PLrAXtmErZgOeiKm4sgNOknGvNjby9efdf&index=6


主题2Past, Present, and Future of Motion Planning in a Complex World


Sertac Karaman - [ Talk Video ]
Professor, MIT
演讲视频:

https://www.youtube.com/watch?v=0fLSf3NO0-s&list=PLrAXtmErZgOeiKm4sgNOknGvNjby9efdf&index=7


主题3:From Research to Reality: Testing Self-Driving Cars on Public Roads


Karl Iagnemma
CEO, nuTonomy and Research Scientist, MIT
演讲视频:

http://web.mit.edu/mobility/people/karl.html


主题4:Self-Driving Vehicles, SLAM, and Deep Learning


John Leonard
Professor, MIT
演讲视频:

http://marinerobotics.mit.edu/john-j-leonard


主题5:We Only Adopt What We Trust: Policy and the Business of Autonomy


Eric Daimler
White House Presidential Innovation Fellow, Office of Science and Technology Policy
演讲视频:

https://www.linkedin.com/in/daimler


原文地址:https://selfdrivingcars.mit.edu


资源推荐


资源 | 我们从8800个机器学习开源项目中精选出Top30,推荐给你

AI学习者必备 | 圣母大学公开统计计算课程讲义(视频+PPT+作业)

资源 | 机器学习、NLP、Python和Math最好的150余个教程(建议收藏)

资源 | 盘点GitHub最著名的20个Python机器学习项目

资源 | 做一款炫酷的机器人需要哪些学习资源(机器人资源Awesome系列)

资源 | 2017深度学习优秀论文盘点(建议收藏)

资源 | 想用Python学机器学习?Google大神替你写好了所有的编程示范代码

资源 | 亚马逊 AI 主任科学家李沐:动手学深度学习视频大全

资源 | Yann LeCun最新演讲:大脑是如何高效学习的?(附PPT+视频)

资源 | 史上最全机器学习笔记

重磅 | 128篇论文,21大领域,深度学习最值得看的资源全在这了

爆款 | Medium上6900个赞的AI学习路线图,让你快速上手机器学习

葵花宝典之机器学习:全网最重要的AI资源都在这里了(大牛,研究机构,视频,博客,书籍,Quora......)

640?wx_fmt=png

☟☟☟ 更多学习资源,请戳“阅读原文”

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/dQCFKyQDXYm3F8rB0/article/details/79017777
上一篇你走过最长的路,就是机器学习过程中的弯路
下一篇亏本也要抢市场!谷歌亚马逊一路死磕到CES,争夺语音入口之路,谁都不是吃素的
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭