滑模
是小菜鸡呀
这个作者很懒,什么都没留下…
展开
-
滑模鲁棒控制(hm-3)
考虑如下被控对象:滑模面设计为:e(t)为期望位置和实际位置的差,则有:根据上一节所讲的几种趋近率,我们采用指数趋近率:代入得到:由于干扰d(t)未知,上述控制律无法实现。为了解决这一问题,采用干扰的界来设计控制律。设计滑模控制率为:其中dc(t)是和干扰相关的正实数。将式(6)代入式(3)得:通过选取dc(t)来保证控制系绕稳定性,假设:为保证,dc(t)的选取原则如下:当s(t)>0时,取dc(t)=dL;...原创 2021-07-21 15:52:38 · 1261 阅读 · 1 评论 -
滑模控制几种趋近率的对比(hm-2)
我们以最简单的牛顿第二定律作为被控对象来进行几种趋近率的对比。滑模面设计为:e(t)为期望位置和实际位置的差,则有:分别采用等速趋近率、指数趋近率以及幂次趋近率:代入得到:在指数趋近中,趋近速度从较大值逐步减小到零,不仅缩短了趋近时间,而且使运动点到达切换面时的速度很小。单纯的指数趋近,运动点逼近切换面是一个渐近的过程,不能保证有限时间内到达,切换面上也就不存在滑动模态了,所以要增加一个等速趋近项,使当s接近于零时,趋近速度是ε而不是零...原创 2021-07-20 22:07:11 · 11534 阅读 · 3 评论 -
滑模控制简单理解(hm-1)
变结构控制(VSC)是一种特殊的非线性控制器,表现为控制的不连续性,又称滑模控制(SMC)。一般步骤为滑模面的设计、趋近率的设计、控制器的求解。 滑模控制的理解 如图所示,s是滑模面,系统状态处于滑模面等于0(或附近)系统是稳定的。至于为啥系统状态处于滑模面等于0(或附近)系统是稳定的,将在滑模面的设计中解释。那么现在我们的目标就是如何使s趋近于0,从而系统稳定。最容易想到的方法就是。当s>0时,,反之当s<0时,,这样s最终趋近于0。 滑模面的设计 针对线性系统(此处.原创 2021-07-10 16:33:31 · 15686 阅读 · 9 评论