滑模控制几种趋近率的对比(hm-2)

我们以最简单的牛顿第二定律作为被控对象来进行几种趋近率的对比。

 

滑模面设计为:

 

e(t)为期望位置和实际位置的差,则有:

 分别采用等速趋近率、指数趋近率以及幂次趋近率:

 

 

代入得到:

 

在指数趋近中,趋近速度从较大值逐步减小到零,不仅缩短了趋近时间,而且使运动点到达切换面时的速度很小。单纯的指数趋近,运动点逼近切换面是一个渐近的过程,不能保证有限时间内到达,切换面上也就不存在滑动模态了,所以要增加一个等速趋近项,使当s接近于零时,趋近速度是ε而不是零,可以保证有限时间到达。为了保证快速趋近的同时削弱抖振,应在增大k的同时减小ε。

幂次趋近率通过调整α值,可保证当系统状态远离滑动模态(s较大)时,能以较大的速度趋近于滑动模态,当系统状态趋近滑动模态(s较小)时,保证较小的控制增益,以降低抖振。

为了进行比较,取m=1,c1=1期望位置x=3,初始位置x=0

等速趋近率:

 

 指数趋近率

 

幂次趋近率

 

 

 

 

指数趋近律滑模控制器是一种控制器设计方法,用于实现系统的快速趋近稳定。它结合了指数趋近等速趋近两个项,以实现快速趋近滑模面并减小抖振。指数趋近项通过逐步减小趋近速度,缩短趋近时间,并使运动点在到达滑模面时的速度较小。而等速趋近项则在接近零时,保证趋近速度为一个非零值,以确保在有限时间内到达滑模面。通过增大指数趋近项的系数k减小等速趋近项的系数ε,可以同时实现快速趋近抖振的削弱。这种控制器设计方法在实际应用中被广泛使用。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [滑模变结构控制(1)--指数趋近律](https://blog.csdn.net/LUNZO/article/details/124896004)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [VSC/SMC(一)——基于趋近律滑模控制(含程序模型)](https://blog.csdn.net/weixin_50892810/article/details/126468161)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [滑模控制几种趋近对比hm-2)](https://blog.csdn.net/da_xian_yu/article/details/118945725)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值