线性代数教程 线性方程组

本文介绍了线性方程组的消元解法,包括增广矩阵的概念及其与线性方程组的关系。通过初等变换,展示了如何将增广矩阵转化为阶梯形矩阵以求解线性方程组。同时,讨论了无解和无穷多解的情况,并解释了线性相关性和秩的概念。此外,还涉及了向量、向量组的线性组合及极大无关组的确定方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CSDN 的文档显示有一些问题,一些数学符号显示不正确,想看 word文档 的可以移步到 github : LearningDocuments/学习资料/平台无关/线性代数 at master · IceEmblem/LearningDocuments · GitHub

线性方程组消元解法

消元解法

1) 2x + 3y = 8

2 )x + 2y = 5

(2x + 3y) - 2(x + 2y) = -y = 8 - 10 = -2

将y带入1得x = 1,y = 2

我们将这种解法消元解法

增广矩阵

如下线性方程组

a11x1 + a12x2 + ... + a1nxn = b1

a21x1 + a22x2 + ... + a2nxn = b2

...    ...   ...   ....

am1x1 + am2x2 + ... + amnxn = bm

我们可构建矩阵如下矩阵,Ax = b

我们把由A和b组成的矩阵称为增广矩阵,如下

如下,我们用增广矩阵解线性方程组

2x1 + 2x2 - x3 = 6

x1 +  2x2 + 4x3 = 3

5x1 + 7x2 + x3 = 28

增广矩阵为

我们利用初等变换对矩阵的行进行变换,如下

解得:x1 = 1,x2 = 3,x3 = 2

实际上消元解法的过程就是初等变换的过程

阶梯形矩阵

我们称如下形式的矩阵称为阶梯形矩阵

其具有阶梯形状

阶梯形矩阵中,每行开头的元素是1,且它所在的列其他元素为0,则称简化的阶梯形矩阵,如下便是一个简化的阶梯形矩阵

增广矩阵与线性方程组

增广矩阵实际上就是线性方程组,如下增广矩阵

其线性方程组为

  1. 1*x1 + 0*x2 + 0*x3 = 1
  2. 0*x1 + 1*x2 + 0*x3 = 3
  3. 0*x1 + 0*x2 + 1*x3 = 2

我们的增广矩阵通过初等变换转为其他矩阵实际上就是线性方程组1,2,3之间的相加减或者某个方程式的左右2边同乘k倍

无解的增广矩阵

如下矩阵

第3行,不存在 0*x1 + 0*x2 + 0*x3 = 2 ,所以该方程组无解

无穷多解的增广矩阵

如下矩阵,其第4行第4个元素为0,所以无法消去1到3行第4个的元素,其左边的矩阵等价于右边的矩阵

其对应的方程组为

  1. 1*x1 + 0*x2 + 0*x3 + 1x4 = 1
  2. 0*x1 + 1*x2 + 0*x3 + 3x4 = 5
  3. 0*x1 + 0*x2 + 1*x3 + 2x4 = 9

所以方程组的解为

x1 = 1 - x4

x2 = 5 - 3x4

x3 = 9 - 2x4

x4 = c

当x4等于某个数值c是,我们带入x4去求x123

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值