矩阵特征值

本文探讨了矩阵特征值在简化计算中的重要性,通过实例解释了如何使用特征值简化矩阵幂的计算。文章详细介绍了特征值的定义、性质、复数领域的应用,包括复对称矩阵和复正交矩阵,并讨论了相似矩阵和正定矩阵的概念。通过特征值和特征向量,矩阵可以被对角化,这对于解决微分或差分方程非常有用。
摘要由CSDN通过智能技术生成

简介

本文的主要是内容是从矩阵的特征值出发,不断深入与之相关的线性代数知识。

为什么要研究矩阵的特征值

矩阵是一种计算工具,研究矩阵的特征值可以简化矩阵的计算,至于到底能简化什么计算,请往后看。
先看一个例子。
已知序列F是Fibonacci序列:
1 , 1 , 2 , 3 , 5 , 8 , . . . 1,1,2,3,5,8,... 1,1,2,3,5,8,...
F k + 1 = F k + F k − 1 F_{k+1}=F_{k}+F_{k-1} Fk+1=Fk+Fk1
给上面的方程添加一个恒等式:
F k = F k F_{k}=F_{k} Fk=Fk
u k = ( F k + 1 F k ) u_k=\begin{pmatrix} F_{k+1}\\F_k \end{pmatrix} uk=(Fk+1Fk)
则方程组可以写成矩阵形式:
u k = A u k − 1 , A = ( 1 1 1 0 ) u_k=Au_{k-1},A=\begin{pmatrix} 1 &1\\1&0 \end{pmatrix} uk=Auk1A=(1110)
于是

u k = A k u 0 u_k=A^ku_{0} uk=Aku0

矩阵的幂计算量很大,接下来看特征值是如何简化这个计算。

特征值定义

方阵 A A A,若存在非零向量 x x x使得 A x = λ x Ax=\lambda x Ax=λx,则 λ \lambda λ称为矩阵A的特征值,x为对应的特征向量。

把A看作是一种变换,则等式的意义就是对于特征向量x,经过A变换后的方向不变。举例:若A的作用是对地球旋转变换,无论旋转角度等于多少,南极和北极均可以视为A的特征向量。

方阵A的特征值之和等于A的对角线元素之和(迹)。

这个性质可以用二项式定理证明。

如果A是三角阵,则A的对角线元素就是特征值。

A T A^T AT与A具有相同的特征值。

证明: ∣ A − λ I ∣ = ∣ A T − λ I ∣ |A-\lambda I|=|A^T-\lambda I| AλI=ATλI,这说明特征值方程相同,所以特征值相同,但是特征向量一般不同。

如果方阵A有n个线性无关的特征向量,将这n个特征向量组成一个矩阵S,则有
S − 1 A S = Λ S^{-1}AS=\Lambda S1AS=Λ
其中 Λ \Lambda Λ 是一个对角阵,其对角线元素就是A的特征值。

可以利用AS=S Λ \Lambda Λ证明。
注意事项:1要考虑什么样的方阵符合条件;2S不是唯一,因为特征向量的常数倍仍是特征向量;3如果AS=S Λ \Lambda Λ,则S的列向量必然是A的特征向量。
由注意事项1引出:
A的特征向量x,y对应不同的特征值,则x,y线性无关。
推论:
如果A具有n个不同的特征值,则A可以用特征向量对角化。
如果A有重特征值呢?那就看关键问题:是否有n个线性无关的特征向量组。
再介绍一个结论:

如果AB=BA,则A,B具有相同的特征向量。

由于S可逆,故有:
A = S Λ S − 1 A=S\Lambda S^{-1} A=SΛS1
所以 A 2 = S Λ 2 S − 1 A^2=S\Lambda^2S^{-1} A2=SΛ2S1

A k = S Λ k S − 1 A^k=S\Lambda^kS^{-1} Ak=SΛkS1

回到开头Fibonacci序列的问题,将 A k A^k Ak次公式代入,可以看到:对角阵的幂是很容易计算的,这就大大简化了矩阵A的幂的计算。
这里再说一点,特征值和特征向量的意义。如果令 u k = S v k u_k=Sv_k uk=Svk,则有
u k = A u k − 1 = A S v k − 1 = S Λ v k − 1 = S v k u_k=Au_{k-1}=ASv_{k-1}=S\Lambda v_{k-1}=Sv_k uk=Auk1=ASvk1=SΛvk1=Svk
看右边的等式,消去S可以得到
v k = Λ v k − 1 v_k=\Lambda v_{k-1} vk=Λvk1
这个式子还原成方程组形式,如果设v的分量未知数分别为x,y…:
f ( x ) = 0 g ( y ) = 0 f(x)=0\\ g(y)=0 f(x)=0g(y)=0
. . . ... ...
可以看出令 u = S v u=Sv u=Sv以后,方程组未知数之间实现了解耦。这说明矩阵的特征向量可以描述系统的内部耦合情况。
我不想进行具体的计算,但下面的结论只有计算过了才能理解更透彻。考虑特征值矩阵的k次方。若k相当大,则特征值的k次方是否收敛,就决定了系统是否能达到稳态。
利用矩阵的特征值特征向量,对矩阵A进行对角化,可以解微分或者差分方程,不举例了。
再强调一下,利用矩阵的特征值特征向量,对矩阵A进行对角化,得到对角矩阵与A具有相同的特征值。这就是特征值研究的目的,为了得到一个与A具有相同特征值的对角矩阵。这个概念也称为相似矩阵

复数领域

在计算特征值的时候,很容易碰到无实数解的情况,下面是将实数推广到复数。这部分内容看起来复杂,名词一头雾水,但实质内容并不困难,只是在某些计算上做一些微小的修正。
直接亮出结论

实数域的转置T,在复数域应该是:共轭转置H

计算内积时可以发现这么做的原因。实数域里一切涉及到转置T的运算在复数域里都替换成H。
复对阵矩阵: A = A H A=A^H A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值