线性代数教程 矩阵的特征值

本文详细介绍了线性代数中的特征值与特征向量概念,包括特征值的求解、特征多项式、多重特征值、矩阵的相似对角化以及实对称矩阵的特征值特性。还探讨了正交向量组、正交矩阵与实对称矩阵的关系。
摘要由CSDN通过智能技术生成

CSDN 的文档显示有一些问题,一些数学符号显示不正确,想看 word文档 的可以移步到 github : LearningDocuments/学习资料/平台无关/线性代数 at master · IceEmblem/LearningDocuments · GitHub

矩阵的特征值与特征向量

特征值与特征向量

对于n阶矩阵A,如果存在数值 λ 和非0向量 α,使得 Aα = λα ,则我们称 λ 为矩阵的特征值,α 为对应 λ 的特征向量

特征多项式

有等式Aα = λα 得出

λIα - Aα = 0

(λI - A)α = 0

(λI - A)是一个矩阵,α 是一个非0向量,这说明由矩阵 (λI - A) 表示的齐次线性方程组有非0解,则 |λI - A| = 0,根据该等式,我们可以求出 λ 的值

我们称 |λI - A| 为特征多项式

示例:求解特征值和特征向量

求解如下矩阵A的特征值和特征向量

解:特征多项式 |λI - A| = 0为

简化后得 (λ - 4)(λ + 2) = 0

得矩阵得特征值为 4 和 -2

我们将特征值4带入矩阵 (λI - A)

接下来就是利用增广矩阵求解基础解系,如果忘了请查阅线性方程组章节

得出对应得特征向量 α = (1, 1)T

同理将特征值-2带入矩阵中,求解对应得基础解系

多重特征值

n阶矩阵的特征多项式简化后为总会变为如下形式

左边是n个乘积右边是0

(λ - 4)(λ + 2)(λ - 1)(λ - 1) ... = 0

通过这个等式可以求出n个特征值,如 4,-2,1,1 ... ,有些特征值是相同的,如数值为1的特征值有2个,则我们将1这个特征值称为2重特征值

定理:n阶矩阵A与它的转置AT具有相同得特征值

证那么多干什么,我都记不住

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值