纯个人分享,若方法、代码有不当之处,请多批评指正。
本赛题以竞品分析为背景,通过数据的聚类,为汽车提供聚类分类。对于指定的车型,可以通过聚类分析找到其竞品车型。通过这道赛题,鼓励参赛者利用车型数据,进行车型画像的分析,为产品的定位,竞品分析提供数据决策。
首先是常规操作,加载第三方库。
# 加载第三方库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import random
from sklearn.cluster import KMeans
# 统一量纲
from sklearn.preprocessing import MinMaxScaler as mms
# 根据轮廓系数选择合适的 n_clusters
from sklearn.metrics import silhouette_score
把数据读进来看看长什么样子。
# 读取数据
path = r'D:\汽车产品聚类分析\car_price.csv'
data = pd.read_csv(path)
data.head()

一共有26个字段,先看看各字段
汽车聚类分析与KMeans应用

该博客介绍了一种使用KMeans进行汽车产品聚类的方法,旨在为竞品分析提供数据支持。首先,作者读取并检查数据,处理品牌字段的不规则命名,然后将分类变量转换为哑变量,接着进行数据清洗和归一化。通过计算轮廓系数确定最佳聚类数(n_clusters=20)。最终,应用KMeans进行聚类,并展示了聚类结果。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



