线性代数 --- LU分解的编程实现Crout‘s method

本文详细解析了矩阵A通过LU分解的过程,通过4x4实例展示如何利用下三角矩阵L和上三角矩阵U的乘积表示A,遵循特定求解顺序,强调了高斯消元法的应用和croutmethod算法的特点。编程实现中,关键在于按列逐步求解,确保依赖关系的正确性。

         对于矩阵A而言(A必须是方阵),假设A可以被分解成两个矩阵L和U的乘积,则有:

L\cdot U=A

        其中L为下三角矩阵(除了主对角线上的元素和主对角线以下的元素之外,其他元素都是0的矩阵),U为上三角矩阵(除了主对角线上的元素和主对角线以上的元素之外,其他元素都是0的矩阵)。以4x4矩阵为例,假设我们令下三角矩阵L和上三角矩阵U分别为:

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松下J27

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值