对于矩阵A而言(A必须是方阵),假设A可以被分解成两个矩阵L和U的乘积,则有:
其中L为下三角矩阵(除了主对角线上的元素和主对角线以下的元素之外,其他元素都是0的矩阵),U为上三角矩阵(除了主对角线上的元素和主对角线以上的元素之外,其他元素都是0的矩阵)。以4x4矩阵为例,假设我们令下三角矩阵L和上三角矩阵U分别为:
本文详细解析了矩阵A通过LU分解的过程,通过4x4实例展示如何利用下三角矩阵L和上三角矩阵U的乘积表示A,遵循特定求解顺序,强调了高斯消元法的应用和croutmethod算法的特点。编程实现中,关键在于按列逐步求解,确保依赖关系的正确性。
对于矩阵A而言(A必须是方阵),假设A可以被分解成两个矩阵L和U的乘积,则有:
其中L为下三角矩阵(除了主对角线上的元素和主对角线以下的元素之外,其他元素都是0的矩阵),U为上三角矩阵(除了主对角线上的元素和主对角线以上的元素之外,其他元素都是0的矩阵)。以4x4矩阵为例,假设我们令下三角矩阵L和上三角矩阵U分别为:
1484

被折叠的 条评论
为什么被折叠?